2d Deep Cavity Flow, Lid Driven Using Conventional Methodwith New Perspective

In this study, conventional FDM with new perspective is applied for simulation of lid- driven flow in a 2-D, rectangular, deep cavity. The code for deep cavity is presented using rectangular cavity 100 x 300, 100 x 200 and 100 x100 with depth ratio of 3,2 and 1 respectively. Results are presented...

全面介紹

Saved in:
書目詳細資料
Main Authors: Muhammad Saifuddin, Idris, N. M. M., Ammar
格式: Conference or Workshop Item
語言:English
出版: 2010
主題:
在線閱讀:http://umpir.ump.edu.my/id/eprint/1826/1/2d_Deep_Cavity_Flow%2C_Lid_Driven_Using_Conventional.pdf
http://umpir.ump.edu.my/id/eprint/1826/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:In this study, conventional FDM with new perspective is applied for simulation of lid- driven flow in a 2-D, rectangular, deep cavity. The code for deep cavity is presented using rectangular cavity 100 x 300, 100 x 200 and 100 x100 with depth ratio of 3,2 and 1 respectively. Results are presented in streamlines pattern for deep cavity flow at steady state for Reynolds numbers of 100, 400 and 1000. Several features of the flow, such as the streamlines pattern, contour of stream function and midsection velocity profile are investigated. Result for deep cavities under steady state shows that the vortex pattern at the bottom enlarge, which thencombine to form a second primary-eddy as the cavity depth-ratio is increased. As the Reynolds number increase, the form of primary vortex and the second primary-vortex then formed through afast transition of an unsteady wall-eddy. Midsection velocity also yields high as Reynolds number increase. The predicted result from FDM with new perspective gives more improvement results as grid mesh increases.