Predictive Inference for Bivariate Data with Nonparametric Copula
This study presents a new nonparametric method for prediction of a future bivariate observation, by combining non-parametric predictive inference (NPI) for the marginals with nonparametric copula. In this paper we specifically use kernel method to take dependence structure into account. NPI is a fre...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
AIP Publishing
2016
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/18628/1/fist-2016-yanti-Predictive%20Inference%20for%20Bivariate%20Data1.pdf http://umpir.ump.edu.my/id/eprint/18628/ https://doi.org/10.1063/1.4954609 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaysia Pahang |
Language: | English |
id |
my.ump.umpir.18628 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.186282017-10-31T06:28:18Z http://umpir.ump.edu.my/id/eprint/18628/ Predictive Inference for Bivariate Data with Nonparametric Copula Noryanti, Muhammad Coolen, Frank P. A. Coolen-Maturi, Tahani QA Mathematics This study presents a new nonparametric method for prediction of a future bivariate observation, by combining non-parametric predictive inference (NPI) for the marginals with nonparametric copula. In this paper we specifically use kernel method to take dependence structure into account. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only few modelling assumptions. While, copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. We estimate the copula density using kernel method and investigate the performance of this method via simulations. We discuss the simulation results to show how our method performs for different sample sizes and apply the method to data sets from the literature and briefly outline related challenges and opportunities for future research. AIP Publishing 2016 Conference or Workshop Item PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/18628/1/fist-2016-yanti-Predictive%20Inference%20for%20Bivariate%20Data1.pdf Noryanti, Muhammad and Coolen, Frank P. A. and Coolen-Maturi, Tahani (2016) Predictive Inference for Bivariate Data with Nonparametric Copula. In: AIP Conference Proceedings: Advances In Industrial And Applied Mathematics, Proceedings of 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23), 24-26 November 2015 , Johor Bahru, Malaysia. pp. 1-8., 1750 (1). ISBN 978-0-7354-1407-5 https://doi.org/10.1063/1.4954609 |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Noryanti, Muhammad Coolen, Frank P. A. Coolen-Maturi, Tahani Predictive Inference for Bivariate Data with Nonparametric Copula |
description |
This study presents a new nonparametric method for prediction of a future bivariate observation, by combining non-parametric predictive inference (NPI) for the marginals with nonparametric copula. In this paper we specifically use kernel method to take dependence structure into account. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only few modelling assumptions. While, copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. We estimate the copula density using kernel method and investigate the performance of this method via simulations. We discuss the simulation results to show how our method performs for different sample sizes and apply the method to data sets from the literature and briefly outline related challenges and opportunities for future research. |
format |
Conference or Workshop Item |
author |
Noryanti, Muhammad Coolen, Frank P. A. Coolen-Maturi, Tahani |
author_facet |
Noryanti, Muhammad Coolen, Frank P. A. Coolen-Maturi, Tahani |
author_sort |
Noryanti, Muhammad |
title |
Predictive Inference for Bivariate Data with Nonparametric Copula |
title_short |
Predictive Inference for Bivariate Data with Nonparametric Copula |
title_full |
Predictive Inference for Bivariate Data with Nonparametric Copula |
title_fullStr |
Predictive Inference for Bivariate Data with Nonparametric Copula |
title_full_unstemmed |
Predictive Inference for Bivariate Data with Nonparametric Copula |
title_sort |
predictive inference for bivariate data with nonparametric copula |
publisher |
AIP Publishing |
publishDate |
2016 |
url |
http://umpir.ump.edu.my/id/eprint/18628/1/fist-2016-yanti-Predictive%20Inference%20for%20Bivariate%20Data1.pdf http://umpir.ump.edu.my/id/eprint/18628/ https://doi.org/10.1063/1.4954609 |
_version_ |
1643668493786152960 |