Designing Driver Space for Large Car

For the last few decades, three-dimensional human simulation tools have complemented the traditional method of using 2D templates. Human simulation tools are, for example, used for optimizing comfort, fit, reach and vision. In this study, two other methods will be adopted to assist present met...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Zamri, Mohamed
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2010
الموضوعات:
الوصول للمادة أونلاين:http://umpir.ump.edu.my/id/eprint/2142/1/Design_Driver_Space_For_Large_Car.pdf
http://umpir.ump.edu.my/id/eprint/2142/
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universiti Malaysia Pahang Al-Sultan Abdullah
اللغة: English
id my.ump.umpir.2142
record_format eprints
spelling my.ump.umpir.21422015-03-03T07:54:57Z http://umpir.ump.edu.my/id/eprint/2142/ Designing Driver Space for Large Car Zamri, Mohamed T Technology (General) TJ Mechanical engineering and machinery For the last few decades, three-dimensional human simulation tools have complemented the traditional method of using 2D templates. Human simulation tools are, for example, used for optimizing comfort, fit, reach and vision. In this study, two other methods will be adopted to assist present method of using a 2D SAE template. The other methods will be by measurements and using ergonomic software. Measurement is done by using general layout drawing of benchmark vehicles.. Ergonomic tool that will be used for this study is Ramsis. Anthropometrics data used will be based on 95%tile USA/Canada population and 5%tile Japanese/Korean/Malaysian population. The 95%tile manikin size is used to get the maximum space accommodation while for smaller percentiles will be accommodated with the range of adjustability. Using 5% tile women for the minimum space accommodation, it was found that the SgRP at the most comfortable position for 5% tile women stature is situated lower and toward the front of vehicle. From original SgRP point for 95%tile male, the preferred SgRP point for 5%tile women is 50 mm lower and 200 mm closer to instrument panel. Conclusively, the adjusting range for the seat should be at least 200 mm while it is preferable to have seating height adjustment of 50 mm. 2010-12-03 Conference or Workshop Item PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/2142/1/Design_Driver_Space_For_Large_Car.pdf Zamri, Mohamed (2010) Designing Driver Space for Large Car. In: National Conference in Mechanical Engineering Research and Postgraduate Studies (2nd NCMER 2010), 3-4 December 2010 , UMP Pekan, Pahang. .
institution Universiti Malaysia Pahang Al-Sultan Abdullah
building UMPSA Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang Al-Sultan Abdullah
content_source UMPSA Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic T Technology (General)
TJ Mechanical engineering and machinery
spellingShingle T Technology (General)
TJ Mechanical engineering and machinery
Zamri, Mohamed
Designing Driver Space for Large Car
description For the last few decades, three-dimensional human simulation tools have complemented the traditional method of using 2D templates. Human simulation tools are, for example, used for optimizing comfort, fit, reach and vision. In this study, two other methods will be adopted to assist present method of using a 2D SAE template. The other methods will be by measurements and using ergonomic software. Measurement is done by using general layout drawing of benchmark vehicles.. Ergonomic tool that will be used for this study is Ramsis. Anthropometrics data used will be based on 95%tile USA/Canada population and 5%tile Japanese/Korean/Malaysian population. The 95%tile manikin size is used to get the maximum space accommodation while for smaller percentiles will be accommodated with the range of adjustability. Using 5% tile women for the minimum space accommodation, it was found that the SgRP at the most comfortable position for 5% tile women stature is situated lower and toward the front of vehicle. From original SgRP point for 95%tile male, the preferred SgRP point for 5%tile women is 50 mm lower and 200 mm closer to instrument panel. Conclusively, the adjusting range for the seat should be at least 200 mm while it is preferable to have seating height adjustment of 50 mm.
format Conference or Workshop Item
author Zamri, Mohamed
author_facet Zamri, Mohamed
author_sort Zamri, Mohamed
title Designing Driver Space for Large Car
title_short Designing Driver Space for Large Car
title_full Designing Driver Space for Large Car
title_fullStr Designing Driver Space for Large Car
title_full_unstemmed Designing Driver Space for Large Car
title_sort designing driver space for large car
publishDate 2010
url http://umpir.ump.edu.my/id/eprint/2142/1/Design_Driver_Space_For_Large_Car.pdf
http://umpir.ump.edu.my/id/eprint/2142/
_version_ 1822915751114178560