The Flexural Strength Prediction of Porous Cu-Sn-Ti Composites via Artificial Neural Networks

Porous alloy-composites have demonstrated excellent qualities with regards to grinding superalloys. Flexural strength is an important mechanical property associated with the porosity level as well as inhomogeneity in porous composites. Owing to the non-linear characteristics of the constituents of t...

Full description

Saved in:
Bibliographic Details
Main Authors: El Sawy, Abdelrahman, Anwar, P. P. Abdul Majeed, Musa, Rabiu Muazu, Mohd Azraai, M. Razman, Mohd Hasnun Ariff, Hassan, Abdul Aziz, Jaafar
Format: Book Section
Language:English
English
English
Published: Universiti Malaysia Pahang 2018
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/24528/1/62.%20The%20flexural%20strength%20prediction%20of%20porous%20cu-sn-ti.pdf
http://umpir.ump.edu.my/id/eprint/24528/8/8.%20The%20flexural%20strength%20prediction%20of%20porous%20Cu-Sn-Ti%20composites%20via%20artificial%20neural%20networks.pdf
http://umpir.ump.edu.my/id/eprint/24528/9/8.1%20The%20flexural%20strength%20prediction%20of%20porous%20Cu-Sn-Ti%20composites%20via%20artificial%20neural%20networks.pdf
http://umpir.ump.edu.my/id/eprint/24528/
https://link.springer.com/chapter/10.1007/978-981-13-8323-6_34
https://doi.org/10.1007/978-981-13-8323-6_34
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Pahang
Language: English
English
English
Description
Summary:Porous alloy-composites have demonstrated excellent qualities with regards to grinding superalloys. Flexural strength is an important mechanical property associated with the porosity level as well as inhomogeneity in porous composites. Owing to the non-linear characteristics of the constituents of the composite material, the prediction of specific mechanical properties by means of the conventional regression model is often unsatisfactory. Therefore, the utilisation of artificial intelligence for the prediction of such properties is non-trivial. This study evaluates the efficacy of artificial neural network (ANN) in predicting the flexural strength of porous Cu-Sn-Ti composite with Molybdenum disulfide (MoS2) particles. The input parameters of the ANN model are the average carbamide particles size, the porosity volume as well as the weight fraction of the MoS2 particles. The determination of the number of hidden neurons of the single hidden layer ANN model developed is obtained via an empirical formulation. The ANN model developed is compared to a conventional multiple linear regression (MLR) model. It was demonstrated that the ANN-based model is able to predict well the flexural strength of the porous-composite investigated in comparison to the MLR model.