ECG noise reduction with the use of the ant lion optimizer algorithm
The electrocardiogram (ECG) signal is susceptible to noise and artifacts and it is essential to remove that noise in order to support any decision making for automatic heart disorder diagnosis systems. In this paper, the use of Ant Lion Optimizer (ALO) for optimizing and identifying the cutoff frequ...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
ETASR
2019
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/25845/1/ECG%20noise%20reduction%20with%20the%20use%20of%20the%20ant.pdf http://umpir.ump.edu.my/id/eprint/25845/ https://www.etasr.com/index.php/ETASR/article/view/2766/pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaysia Pahang |
Language: | English |
id |
my.ump.umpir.25845 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.258452019-11-26T03:23:48Z http://umpir.ump.edu.my/id/eprint/25845/ ECG noise reduction with the use of the ant lion optimizer algorithm Kiew, Hui Hii Vigneswaran, Narayanamurthy Fahmi, Samsuri TK Electrical engineering. Electronics Nuclear engineering The electrocardiogram (ECG) signal is susceptible to noise and artifacts and it is essential to remove that noise in order to support any decision making for automatic heart disorder diagnosis systems. In this paper, the use of Ant Lion Optimizer (ALO) for optimizing and identifying the cutoff frequency of the ECG signal for low-pass filtering is investigated. Generally, the spectrums of the ECG signal are extracted from two classes: arrhythmia and supraventricular. Baseline wander is removed by a moving median filter. A dataset of the extracted features of the ECG spectrums is used to train the ALO. The performance of the ALO is investigated. The ALO-identified cutoff frequency is applied to a Finite Impulse Response (FIR) filter and the resulting signal is evaluated against the original clean and conventional filtered ECG signals. The results show that the intelligent ALO-based system successfully denoised the ECG signals more effectively than the conventional method. The accuracy percentage increased by 2%. ETASR 2019-08 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/25845/1/ECG%20noise%20reduction%20with%20the%20use%20of%20the%20ant.pdf Kiew, Hui Hii and Vigneswaran, Narayanamurthy and Fahmi, Samsuri (2019) ECG noise reduction with the use of the ant lion optimizer algorithm. Engineering, Technology & Applied Science Research, 9 (4). pp. 4525-4529. ISSN 2241-4487 (print); 1792-8036 (online) https://www.etasr.com/index.php/ETASR/article/view/2766/pdf |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Kiew, Hui Hii Vigneswaran, Narayanamurthy Fahmi, Samsuri ECG noise reduction with the use of the ant lion optimizer algorithm |
description |
The electrocardiogram (ECG) signal is susceptible to noise and artifacts and it is essential to remove that noise in order to support any decision making for automatic heart disorder diagnosis systems. In this paper, the use of Ant Lion Optimizer (ALO) for optimizing and identifying the cutoff frequency of the ECG signal for low-pass filtering is investigated. Generally, the spectrums of the ECG signal are extracted from two classes: arrhythmia and supraventricular. Baseline wander is removed by a moving median filter. A dataset of the extracted features of the ECG spectrums is used to train the ALO. The performance of the ALO is investigated. The ALO-identified cutoff frequency is applied to a Finite Impulse Response (FIR) filter and the resulting signal is evaluated against the original clean and conventional filtered ECG signals. The results show that the intelligent ALO-based system successfully denoised the ECG signals more effectively than the conventional method. The accuracy percentage increased by 2%. |
format |
Article |
author |
Kiew, Hui Hii Vigneswaran, Narayanamurthy Fahmi, Samsuri |
author_facet |
Kiew, Hui Hii Vigneswaran, Narayanamurthy Fahmi, Samsuri |
author_sort |
Kiew, Hui Hii |
title |
ECG noise reduction with the use of the ant lion optimizer algorithm |
title_short |
ECG noise reduction with the use of the ant lion optimizer algorithm |
title_full |
ECG noise reduction with the use of the ant lion optimizer algorithm |
title_fullStr |
ECG noise reduction with the use of the ant lion optimizer algorithm |
title_full_unstemmed |
ECG noise reduction with the use of the ant lion optimizer algorithm |
title_sort |
ecg noise reduction with the use of the ant lion optimizer algorithm |
publisher |
ETASR |
publishDate |
2019 |
url |
http://umpir.ump.edu.my/id/eprint/25845/1/ECG%20noise%20reduction%20with%20the%20use%20of%20the%20ant.pdf http://umpir.ump.edu.my/id/eprint/25845/ https://www.etasr.com/index.php/ETASR/article/view/2766/pdf |
_version_ |
1651866938142359552 |