Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst
The production of valuable fatty acid alkyl ester (FAAE) commercially known as biodiesel from used cooking oil (UCO) as feedstock has recently gained global interest. To carry out this production process, an esterification reaction is necessary to minimize the amount of free fatty acid (FFA) in the...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier Ltd
2021
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/33967/7/Esterification%20reaction%20of%20free%20fatty%20acid.pdf http://umpir.ump.edu.my/id/eprint/33967/ https://doi.org/10.1016/j.cherd.2021.10.020 https://doi.org/10.1016/j.cherd.2021.10.020 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaysia Pahang Al-Sultan Abdullah |
Language: | English |
id |
my.ump.umpir.33967 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.339672022-11-07T06:44:03Z http://umpir.ump.edu.my/id/eprint/33967/ Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst Nurul Asmawati, Roslan Sumaiya, Zainal Abidin Norhayati, Abdullah Osazuwa, Osarieme Uyi Ruwaida, Abdul Rasid Nursofia, Mohd Yunus TP Chemical technology The production of valuable fatty acid alkyl ester (FAAE) commercially known as biodiesel from used cooking oil (UCO) as feedstock has recently gained global interest. To carry out this production process, an esterification reaction is necessary to minimize the amount of free fatty acid (FFA) in the UCO. The purpose of this research work is to evaluate the performance of the newly snythesized sulfonated hypercrosslinked exchange resin (SHER) for the esterification reaction. The catalyst was first synthesized and characterized using various physicochemical analyses (i.e. Fourier transform infra-red (FTIR), surface morphology, N2 physisorption analysis and thermogravimetric analysis (TGA)) and further subjected to the esterification reaction to determine the reaction kinetics. The esterification reaction was conducted at various catalyst loading (1−8 wt%), reaction temperatures (40−60 ◦C), and methanol to oil molar ratios (6:1−24:1). From the characterization study, SHER was found to have high decomposition temperature (up to 398 ◦C) and specific surface area (836 m2 g−1). Additionally, SHER had the capability to accommodate high number of active sites which could benefit the esterification reaction. The highest FFA conversion of 97% was achieved at 5 wt% catalyst loading, 60 ◦C of reaction temperature and 12:1 methanol to oil mole ratio in 2 h reaction time. Analyses of the spent catalyst revealed the presence of impurities residue on the SHER’s surface following the esterification reaction, and the catalyst pore remained evident even after several reusability cycles. Finally, the Eley-Rideal, pseudo-homogeneous and Langmuir-Hinshelwood-Hougen-Watson kinetic models were proposed. Due to its high activation energy; i.e. 48.4 kJ mol−1, the reaction was found to be limited by surface reaction and governed by the chemical step. Elsevier Ltd 2021 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/33967/7/Esterification%20reaction%20of%20free%20fatty%20acid.pdf Nurul Asmawati, Roslan and Sumaiya, Zainal Abidin and Norhayati, Abdullah and Osazuwa, Osarieme Uyi and Ruwaida, Abdul Rasid and Nursofia, Mohd Yunus (2021) Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst. Chemical Engineering Research and Design, 180. pp. 414-424. ISSN 0263-8762. (Published) https://doi.org/10.1016/j.cherd.2021.10.020 https://doi.org/10.1016/j.cherd.2021.10.020 |
institution |
Universiti Malaysia Pahang Al-Sultan Abdullah |
building |
UMPSA Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang Al-Sultan Abdullah |
content_source |
UMPSA Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology Nurul Asmawati, Roslan Sumaiya, Zainal Abidin Norhayati, Abdullah Osazuwa, Osarieme Uyi Ruwaida, Abdul Rasid Nursofia, Mohd Yunus Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst |
description |
The production of valuable fatty acid alkyl ester (FAAE) commercially known as biodiesel from used cooking oil (UCO) as feedstock has recently gained global interest. To carry out this production process, an esterification reaction is necessary to minimize the amount of free fatty acid (FFA) in the UCO. The purpose of this research work is to evaluate the performance of the newly snythesized sulfonated hypercrosslinked exchange resin (SHER) for the esterification reaction. The catalyst was first synthesized and characterized using various physicochemical analyses (i.e. Fourier transform infra-red (FTIR), surface morphology, N2 physisorption analysis and thermogravimetric analysis (TGA)) and further subjected to
the esterification reaction to determine the reaction kinetics. The esterification reaction was conducted at various catalyst loading (1−8 wt%), reaction temperatures (40−60 ◦C), and methanol to oil molar ratios (6:1−24:1). From the characterization study, SHER was found to have high decomposition temperature (up to 398 ◦C) and specific surface area (836 m2 g−1). Additionally, SHER had the capability to accommodate high number of active sites which
could benefit the esterification reaction. The highest FFA conversion of 97% was achieved at 5 wt% catalyst loading, 60 ◦C of reaction temperature and 12:1 methanol to oil mole ratio in 2 h reaction time. Analyses of the spent catalyst revealed the presence of impurities residue on the SHER’s surface following the esterification reaction, and the catalyst pore remained evident even after several reusability cycles. Finally, the Eley-Rideal, pseudo-homogeneous and Langmuir-Hinshelwood-Hougen-Watson kinetic models were proposed. Due to its high activation energy; i.e. 48.4 kJ mol−1, the reaction was found to be limited by surface reaction and governed by the chemical step. |
format |
Article |
author |
Nurul Asmawati, Roslan Sumaiya, Zainal Abidin Norhayati, Abdullah Osazuwa, Osarieme Uyi Ruwaida, Abdul Rasid Nursofia, Mohd Yunus |
author_facet |
Nurul Asmawati, Roslan Sumaiya, Zainal Abidin Norhayati, Abdullah Osazuwa, Osarieme Uyi Ruwaida, Abdul Rasid Nursofia, Mohd Yunus |
author_sort |
Nurul Asmawati, Roslan |
title |
Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst |
title_short |
Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst |
title_full |
Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst |
title_fullStr |
Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst |
title_full_unstemmed |
Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst |
title_sort |
esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst |
publisher |
Elsevier Ltd |
publishDate |
2021 |
url |
http://umpir.ump.edu.my/id/eprint/33967/7/Esterification%20reaction%20of%20free%20fatty%20acid.pdf http://umpir.ump.edu.my/id/eprint/33967/ https://doi.org/10.1016/j.cherd.2021.10.020 https://doi.org/10.1016/j.cherd.2021.10.020 |
_version_ |
1822922573325795328 |