Structural parameters versus third-order optical susceptibility of zinc porphyrin molecules
To deepen the structure-property relationship, and thereby develop improved third-order nonlinear optical (NLO) molecular materials, porphyrin is a promising candidate because of its strong excited state absorption, high triplet yields, and large transmission window of the main ground state absorpti...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Royal Society of Chemistry
2021
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/33980/7/Structural%20parameters%20versus%20third-order.pdf http://umpir.ump.edu.my/id/eprint/33980/ https://doi.org/10.1039/D1TC04777A https://doi.org/10.1039/D1TC04777A |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaysia Pahang |
Language: | English |
id |
my.ump.umpir.33980 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.339802022-05-11T08:32:44Z http://umpir.ump.edu.my/id/eprint/33980/ Structural parameters versus third-order optical susceptibility of zinc porphyrin molecules Amina, Yasin Nair, Vijayakumar S. Mohd Hasbi, Ab. Rahim Yamaoka, Yoshihisa Yelleswarapu, Chandra S. Jose, Rajan Q Science (General) QC Physics QD Chemistry To deepen the structure-property relationship, and thereby develop improved third-order nonlinear optical (NLO) molecular materials, porphyrin is a promising candidate because of its strong excited state absorption, high triplet yields, and large transmission window of the main ground state absorption bands. Herein, the third-order NLO properties of molecularly engineered π-expanded Zn(ii)porphyrins (Por-Cn-RAm, wheren= 12 or 8 andm= 1-4) are evaluated by open and closed aperture Z-scan techniques using nanosecond laser pulses and the results are compared with DFT calculations. The measured nonlinear reverse saturable absorption and self-defocusing effect varied in the order Por-C12-RA1> Por-C8-RA4> Por-C12-RA2> Por-C12-RA3, thereby indicating that zinc porphyrins of lesser π-electron conjugation exhibit higher third-order NLO characteristics. The Por-C12-RA1, with a planar structure (dihedral angle:ϕ= 1.38°) and the lowest number of resonating structures, showed much higher third-order NLO parameters than conventional zinc phthalocyanine and the other studied porphyrins. This observation is against the general understanding that extensive π-electron conjugation exhibits stronger third-order NLO properties. Considering these observations, the structure-property relationship in these porphyrins is investigated by combining the experimental results and DFT calculations using six strategies: the effect of (i) lone/unshared pairs of electrons in the molecule, (ii) resonating structures of the molecule, (iii) structural planarity, (iv) position of meso-aryl substituents, (v) electronegativity of the substituents, and (vi) symmetry of the molecule. Among them, the number of free unshared pairs of electrons and the high structural planarity of the molecules along with π-conjugation are shown to be the dominant factors rather than only π-conjugation extension. The findings provide an ideal platform to guide the rational design of new molecules with higher NLO responses Royal Society of Chemistry 2021-12-28 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/33980/7/Structural%20parameters%20versus%20third-order.pdf Amina, Yasin and Nair, Vijayakumar S. and Mohd Hasbi, Ab. Rahim and Yamaoka, Yoshihisa and Yelleswarapu, Chandra S. and Jose, Rajan (2021) Structural parameters versus third-order optical susceptibility of zinc porphyrin molecules. Journal of Materials Chemistry C, 9 (48). 17461 - 17470. ISSN 2050-7526 https://doi.org/10.1039/D1TC04777A https://doi.org/10.1039/D1TC04777A |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
Q Science (General) QC Physics QD Chemistry |
spellingShingle |
Q Science (General) QC Physics QD Chemistry Amina, Yasin Nair, Vijayakumar S. Mohd Hasbi, Ab. Rahim Yamaoka, Yoshihisa Yelleswarapu, Chandra S. Jose, Rajan Structural parameters versus third-order optical susceptibility of zinc porphyrin molecules |
description |
To deepen the structure-property relationship, and thereby develop improved third-order nonlinear optical (NLO) molecular materials, porphyrin is a promising candidate because of its strong excited state absorption, high triplet yields, and large transmission window of the main ground state absorption bands. Herein, the third-order NLO properties of molecularly engineered π-expanded Zn(ii)porphyrins (Por-Cn-RAm, wheren= 12 or 8 andm= 1-4) are evaluated by open and closed aperture Z-scan techniques using nanosecond laser pulses and the results are compared with DFT calculations. The measured nonlinear reverse saturable absorption and self-defocusing effect varied in the order Por-C12-RA1> Por-C8-RA4> Por-C12-RA2> Por-C12-RA3, thereby indicating that zinc porphyrins of lesser π-electron conjugation exhibit higher third-order NLO characteristics. The Por-C12-RA1, with a planar structure (dihedral angle:ϕ= 1.38°) and the lowest number of resonating structures, showed much higher third-order NLO parameters than conventional zinc phthalocyanine and the other studied porphyrins. This observation is against the general understanding that extensive π-electron conjugation exhibits stronger third-order NLO properties. Considering these observations, the structure-property relationship in these porphyrins is investigated by combining the experimental results and DFT calculations using six strategies: the effect of (i) lone/unshared pairs of electrons in the molecule, (ii) resonating structures of the molecule, (iii) structural planarity, (iv) position of meso-aryl substituents, (v) electronegativity of the substituents, and (vi) symmetry of the molecule. Among them, the number of free unshared pairs of electrons and the high structural planarity of the molecules along with π-conjugation are shown to be the dominant factors rather than only π-conjugation extension. The findings provide an ideal platform to guide the rational design of new molecules with higher NLO responses |
format |
Article |
author |
Amina, Yasin Nair, Vijayakumar S. Mohd Hasbi, Ab. Rahim Yamaoka, Yoshihisa Yelleswarapu, Chandra S. Jose, Rajan |
author_facet |
Amina, Yasin Nair, Vijayakumar S. Mohd Hasbi, Ab. Rahim Yamaoka, Yoshihisa Yelleswarapu, Chandra S. Jose, Rajan |
author_sort |
Amina, Yasin |
title |
Structural parameters versus third-order optical susceptibility of zinc porphyrin molecules |
title_short |
Structural parameters versus third-order optical susceptibility of zinc porphyrin molecules |
title_full |
Structural parameters versus third-order optical susceptibility of zinc porphyrin molecules |
title_fullStr |
Structural parameters versus third-order optical susceptibility of zinc porphyrin molecules |
title_full_unstemmed |
Structural parameters versus third-order optical susceptibility of zinc porphyrin molecules |
title_sort |
structural parameters versus third-order optical susceptibility of zinc porphyrin molecules |
publisher |
Royal Society of Chemistry |
publishDate |
2021 |
url |
http://umpir.ump.edu.my/id/eprint/33980/7/Structural%20parameters%20versus%20third-order.pdf http://umpir.ump.edu.my/id/eprint/33980/ https://doi.org/10.1039/D1TC04777A https://doi.org/10.1039/D1TC04777A |
_version_ |
1732945667545890816 |