Diabetes disease prediction system using HNB classifier based on discretization method

Diagnosing diabetes early is critical as it helps patients live with the disease in a healthy way - through healthy eating, taking appropriate medical doses, and making patients more vigilant in their movements/activities to avoid wounds that are difficult to heal for diabetic patients. Data mining...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Hameli, Bassam Abdo, Al-Sewari, Abdul Rahman Ahmed Mohammed, Basurra, Shadi S., Bhogal, Jagdev, Ali, Mohammed A H
Format: Article
Language:English
Published: NLM (Medline) 2023
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/37610/1/Diabetes%20disease%20prediction%20system%20using%20HNB%20classifier%20based%20on%20discretization%20method.pdf
http://umpir.ump.edu.my/id/eprint/37610/
https://doi.org/10.1515/jib-2021-0037
https://doi.org/10.1515/jib-2021-0037
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Pahang
Language: English
id my.ump.umpir.37610
record_format eprints
spelling my.ump.umpir.376102023-06-20T06:46:16Z http://umpir.ump.edu.my/id/eprint/37610/ Diabetes disease prediction system using HNB classifier based on discretization method Al-Hameli, Bassam Abdo Al-Sewari, Abdul Rahman Ahmed Mohammed Basurra, Shadi S. Bhogal, Jagdev Ali, Mohammed A H QA76 Computer software T Technology (General) Diagnosing diabetes early is critical as it helps patients live with the disease in a healthy way - through healthy eating, taking appropriate medical doses, and making patients more vigilant in their movements/activities to avoid wounds that are difficult to heal for diabetic patients. Data mining techniques are typically used to detect diabetes with high confidence to avoid misdiagnoses with other chronic diseases whose symptoms are similar to diabetes. Hidden Naïve Bayes is one of the algorithms for classification, which works under a data-mining model based on the assumption of conditional independence of the traditional Naïve Bayes. The results from this research study, which was conducted on the Pima Indian Diabetes (PID) dataset collection, show that the prediction accuracy of the HNB classifier achieved 82%. As a result, the discretization method increases the performance and accuracy of the HNB classifier. NLM (Medline) 2023-03-01 Article PeerReviewed pdf en cc_by_4 http://umpir.ump.edu.my/id/eprint/37610/1/Diabetes%20disease%20prediction%20system%20using%20HNB%20classifier%20based%20on%20discretization%20method.pdf Al-Hameli, Bassam Abdo and Al-Sewari, Abdul Rahman Ahmed Mohammed and Basurra, Shadi S. and Bhogal, Jagdev and Ali, Mohammed A H (2023) Diabetes disease prediction system using HNB classifier based on discretization method. Journal of integrative bioinformatics, 20 (1). pp. 1-13. ISSN 1613-4516 https://doi.org/10.1515/jib-2021-0037 https://doi.org/10.1515/jib-2021-0037
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic QA76 Computer software
T Technology (General)
spellingShingle QA76 Computer software
T Technology (General)
Al-Hameli, Bassam Abdo
Al-Sewari, Abdul Rahman Ahmed Mohammed
Basurra, Shadi S.
Bhogal, Jagdev
Ali, Mohammed A H
Diabetes disease prediction system using HNB classifier based on discretization method
description Diagnosing diabetes early is critical as it helps patients live with the disease in a healthy way - through healthy eating, taking appropriate medical doses, and making patients more vigilant in their movements/activities to avoid wounds that are difficult to heal for diabetic patients. Data mining techniques are typically used to detect diabetes with high confidence to avoid misdiagnoses with other chronic diseases whose symptoms are similar to diabetes. Hidden Naïve Bayes is one of the algorithms for classification, which works under a data-mining model based on the assumption of conditional independence of the traditional Naïve Bayes. The results from this research study, which was conducted on the Pima Indian Diabetes (PID) dataset collection, show that the prediction accuracy of the HNB classifier achieved 82%. As a result, the discretization method increases the performance and accuracy of the HNB classifier.
format Article
author Al-Hameli, Bassam Abdo
Al-Sewari, Abdul Rahman Ahmed Mohammed
Basurra, Shadi S.
Bhogal, Jagdev
Ali, Mohammed A H
author_facet Al-Hameli, Bassam Abdo
Al-Sewari, Abdul Rahman Ahmed Mohammed
Basurra, Shadi S.
Bhogal, Jagdev
Ali, Mohammed A H
author_sort Al-Hameli, Bassam Abdo
title Diabetes disease prediction system using HNB classifier based on discretization method
title_short Diabetes disease prediction system using HNB classifier based on discretization method
title_full Diabetes disease prediction system using HNB classifier based on discretization method
title_fullStr Diabetes disease prediction system using HNB classifier based on discretization method
title_full_unstemmed Diabetes disease prediction system using HNB classifier based on discretization method
title_sort diabetes disease prediction system using hnb classifier based on discretization method
publisher NLM (Medline)
publishDate 2023
url http://umpir.ump.edu.my/id/eprint/37610/1/Diabetes%20disease%20prediction%20system%20using%20HNB%20classifier%20based%20on%20discretization%20method.pdf
http://umpir.ump.edu.my/id/eprint/37610/
https://doi.org/10.1515/jib-2021-0037
https://doi.org/10.1515/jib-2021-0037
_version_ 1769842519952064512