Hydrogen production via glycerol dry reforming over fibrous Ni/KCC-1
The research intended to evaluate the catalytic activity of Ni-doped on KCC-1 to produce hydrogen thru the reforming process of glycerol and CO2 (GDR). A hydrothermal microemulsion approach was applied to synthesize mesoporous silica KCC-1, which was then impregnated with 10 wt% Ni using an ultrason...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Elsevier Ltd
2023
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/40395/1/Hydrogen%20production%20via%20glycerol%20dry%20reforming%20over.pdf http://umpir.ump.edu.my/id/eprint/40395/2/Hydrogen%20production%20via%20glycerol%20dry%20reforming%20over%20fibrous%20Ni_KCC-1_ABS.pdf http://umpir.ump.edu.my/id/eprint/40395/ https://doi.org/10.1016/j.matpr.2023.03.227 https://doi.org/10.1016/j.matpr.2023.03.227 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaysia Pahang Al-Sultan Abdullah |
Language: | English English |
id |
my.ump.umpir.40395 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.403952024-02-28T04:08:59Z http://umpir.ump.edu.my/id/eprint/40395/ Hydrogen production via glycerol dry reforming over fibrous Ni/KCC-1 Nornasuha, Abdullah Nurul Aini, Mohamed Razali Herma Dina, Setiabudi Chin, Sim Yee Aishah, Abdul Jalil Abdul Rahman, Mohamed QD Chemistry TP Chemical technology The research intended to evaluate the catalytic activity of Ni-doped on KCC-1 to produce hydrogen thru the reforming process of glycerol and CO2 (GDR). A hydrothermal microemulsion approach was applied to synthesize mesoporous silica KCC-1, which was then impregnated with 10 wt% Ni using an ultrasonic-assisted impregnation technique. XRD, BET, and FTIR were used to analyze the physicochemical characteristics of KCC-1 and Ni loaded on KCC-1. A stainless-steel vertical reactor fixed with a catalyst bed inside was used to run the GDR process at 800 °C, Patm, and a 1:1 ratio of glycerol to CO2. KCC-1 exposed sphere fibrous feature bordered with dendritic fibre observed by TEM with a 268 m2/g in specific surface area and 200–400 nm in particle size. The Ni/KCC-1 catalyst achieved 45.25 %, 33.71 %, and 65.64 % glycerol conversion and syngas (H2 and CO) yields, respectively. The high catalytic performance was credited to the fibre-like structure of KCC-1, which facilitates the access of bulky mass glycerol and CO2 to the Ni active species. Thus, this finding has proven that the exceptional structure of the support material could promise catalytic performance in various applications, particularly glycerol dry reforming. Elsevier Ltd 2023 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/40395/1/Hydrogen%20production%20via%20glycerol%20dry%20reforming%20over.pdf pdf en http://umpir.ump.edu.my/id/eprint/40395/2/Hydrogen%20production%20via%20glycerol%20dry%20reforming%20over%20fibrous%20Ni_KCC-1_ABS.pdf Nornasuha, Abdullah and Nurul Aini, Mohamed Razali and Herma Dina, Setiabudi and Chin, Sim Yee and Aishah, Abdul Jalil and Abdul Rahman, Mohamed (2023) Hydrogen production via glycerol dry reforming over fibrous Ni/KCC-1. Materials Today: Proceedings. pp. 1-5. ISSN 2214-7853. (In Press / Online First) (In Press / Online First) https://doi.org/10.1016/j.matpr.2023.03.227 https://doi.org/10.1016/j.matpr.2023.03.227 |
institution |
Universiti Malaysia Pahang Al-Sultan Abdullah |
building |
UMPSA Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang Al-Sultan Abdullah |
content_source |
UMPSA Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English English |
topic |
QD Chemistry TP Chemical technology |
spellingShingle |
QD Chemistry TP Chemical technology Nornasuha, Abdullah Nurul Aini, Mohamed Razali Herma Dina, Setiabudi Chin, Sim Yee Aishah, Abdul Jalil Abdul Rahman, Mohamed Hydrogen production via glycerol dry reforming over fibrous Ni/KCC-1 |
description |
The research intended to evaluate the catalytic activity of Ni-doped on KCC-1 to produce hydrogen thru the reforming process of glycerol and CO2 (GDR). A hydrothermal microemulsion approach was applied to synthesize mesoporous silica KCC-1, which was then impregnated with 10 wt% Ni using an ultrasonic-assisted impregnation technique. XRD, BET, and FTIR were used to analyze the physicochemical characteristics of KCC-1 and Ni loaded on KCC-1. A stainless-steel vertical reactor fixed with a catalyst bed inside was used to run the GDR process at 800 °C, Patm, and a 1:1 ratio of glycerol to CO2. KCC-1 exposed sphere fibrous feature bordered with dendritic fibre observed by TEM with a 268 m2/g in specific surface area and 200–400 nm in particle size. The Ni/KCC-1 catalyst achieved 45.25 %, 33.71 %, and 65.64 % glycerol conversion and syngas (H2 and CO) yields, respectively. The high catalytic performance was credited to the fibre-like structure of KCC-1, which facilitates the access of bulky mass glycerol and CO2 to the Ni active species. Thus, this finding has proven that the exceptional structure of the support material could promise catalytic performance in various applications, particularly glycerol dry reforming. |
format |
Article |
author |
Nornasuha, Abdullah Nurul Aini, Mohamed Razali Herma Dina, Setiabudi Chin, Sim Yee Aishah, Abdul Jalil Abdul Rahman, Mohamed |
author_facet |
Nornasuha, Abdullah Nurul Aini, Mohamed Razali Herma Dina, Setiabudi Chin, Sim Yee Aishah, Abdul Jalil Abdul Rahman, Mohamed |
author_sort |
Nornasuha, Abdullah |
title |
Hydrogen production via glycerol dry reforming over fibrous Ni/KCC-1 |
title_short |
Hydrogen production via glycerol dry reforming over fibrous Ni/KCC-1 |
title_full |
Hydrogen production via glycerol dry reforming over fibrous Ni/KCC-1 |
title_fullStr |
Hydrogen production via glycerol dry reforming over fibrous Ni/KCC-1 |
title_full_unstemmed |
Hydrogen production via glycerol dry reforming over fibrous Ni/KCC-1 |
title_sort |
hydrogen production via glycerol dry reforming over fibrous ni/kcc-1 |
publisher |
Elsevier Ltd |
publishDate |
2023 |
url |
http://umpir.ump.edu.my/id/eprint/40395/1/Hydrogen%20production%20via%20glycerol%20dry%20reforming%20over.pdf http://umpir.ump.edu.my/id/eprint/40395/2/Hydrogen%20production%20via%20glycerol%20dry%20reforming%20over%20fibrous%20Ni_KCC-1_ABS.pdf http://umpir.ump.edu.my/id/eprint/40395/ https://doi.org/10.1016/j.matpr.2023.03.227 https://doi.org/10.1016/j.matpr.2023.03.227 |
_version_ |
1822924149046116352 |