Modeling of Machining Parameters of Ti-6Al-4V for Electric Discharge Machining: A Neural Network Approach

This paper presents the artificial intelligence model to predict the optimal machining parameters for Ti-6Al-4V through electrical discharge machining (EDM) using copper as an electrode and positive polarity of the electrode. The objective of this paper is to investigate the peak current, servo volt...

Full description

Saved in:
Bibliographic Details
Main Author: M. M., Rahman
Format: Article
Language:English
Published: Academic Journals 2012
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/6844/1/Modelling_of_Machining_Parameters_of_Ti-64I-4V_for_electric_discharge_machining.pdf
http://umpir.ump.edu.my/id/eprint/6844/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Pahang
Language: English
id my.ump.umpir.6844
record_format eprints
spelling my.ump.umpir.68442018-01-25T03:13:33Z http://umpir.ump.edu.my/id/eprint/6844/ Modeling of Machining Parameters of Ti-6Al-4V for Electric Discharge Machining: A Neural Network Approach M. M., Rahman TJ Mechanical engineering and machinery This paper presents the artificial intelligence model to predict the optimal machining parameters for Ti-6Al-4V through electrical discharge machining (EDM) using copper as an electrode and positive polarity of the electrode. The objective of this paper is to investigate the peak current, servo voltage, pulse on- and pulse off-time in EDM effects on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR). Radial basis function neural network (RBFNN) is used to develop the artificial neural network (ANN) modeling of MRR, TWR and SR. Design of experiments (DOE) method by using response surface methodology (RSM) techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance (ANOVA). The optimum machining conditions are estimated and verified with proposed ANN model. It is observed that the developed model is within the limits of the agreeable error with experimental results. Sensitivity analysis is carried out to investigate the relative influence of factors on the performance measures. It is observed that peak current effectively influences the performance measures. The reported results indicate that the proposed ANN models can satisfactorily evaluate the MRR, TWR as well as SR in EDM. Therefore, the proposed model can be considered as valuable tools for the process planning for EDM and leads to economical industrial machining by optimizing the input parameters. Academic Journals 2012-02 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/6844/1/Modelling_of_Machining_Parameters_of_Ti-64I-4V_for_electric_discharge_machining.pdf M. M., Rahman (2012) Modeling of Machining Parameters of Ti-6Al-4V for Electric Discharge Machining: A Neural Network Approach. Scientific Research and Essay , 7 (8). pp. 881-890. ISSN 1992-2248 DOI: 10.5897/SRE10.1116
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
M. M., Rahman
Modeling of Machining Parameters of Ti-6Al-4V for Electric Discharge Machining: A Neural Network Approach
description This paper presents the artificial intelligence model to predict the optimal machining parameters for Ti-6Al-4V through electrical discharge machining (EDM) using copper as an electrode and positive polarity of the electrode. The objective of this paper is to investigate the peak current, servo voltage, pulse on- and pulse off-time in EDM effects on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR). Radial basis function neural network (RBFNN) is used to develop the artificial neural network (ANN) modeling of MRR, TWR and SR. Design of experiments (DOE) method by using response surface methodology (RSM) techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance (ANOVA). The optimum machining conditions are estimated and verified with proposed ANN model. It is observed that the developed model is within the limits of the agreeable error with experimental results. Sensitivity analysis is carried out to investigate the relative influence of factors on the performance measures. It is observed that peak current effectively influences the performance measures. The reported results indicate that the proposed ANN models can satisfactorily evaluate the MRR, TWR as well as SR in EDM. Therefore, the proposed model can be considered as valuable tools for the process planning for EDM and leads to economical industrial machining by optimizing the input parameters.
format Article
author M. M., Rahman
author_facet M. M., Rahman
author_sort M. M., Rahman
title Modeling of Machining Parameters of Ti-6Al-4V for Electric Discharge Machining: A Neural Network Approach
title_short Modeling of Machining Parameters of Ti-6Al-4V for Electric Discharge Machining: A Neural Network Approach
title_full Modeling of Machining Parameters of Ti-6Al-4V for Electric Discharge Machining: A Neural Network Approach
title_fullStr Modeling of Machining Parameters of Ti-6Al-4V for Electric Discharge Machining: A Neural Network Approach
title_full_unstemmed Modeling of Machining Parameters of Ti-6Al-4V for Electric Discharge Machining: A Neural Network Approach
title_sort modeling of machining parameters of ti-6al-4v for electric discharge machining: a neural network approach
publisher Academic Journals
publishDate 2012
url http://umpir.ump.edu.my/id/eprint/6844/1/Modelling_of_Machining_Parameters_of_Ti-64I-4V_for_electric_discharge_machining.pdf
http://umpir.ump.edu.my/id/eprint/6844/
_version_ 1643665480512176128