Forecasting Malaysian Gold Using a Hybrid of ARIMA and GJR-GARCH Models

An effective way to improve forecast accuracy is to use a hybrid model. This paper proposes a hybrid model of linear autoregressive moving average (ARIMA) and non-linear GJR-GARCH model also known as TARCH in modeling and forecasting Malaysian gold. The goodness of fit of the model is measured usin...

Full description

Saved in:
Bibliographic Details
Main Authors: Siti Roslindar, Yaziz, Maizah Hura, Ahmad, Pung, Yean Ping, Nor Hamizah, Miswan
Format: Article
Language:English
Published: Hikari Ltd. 2015
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/8976/1/Forecasting%20Malaysian%20Gold%20Using%20a%20Hybrid%20of%20ARIMA%20and%20GJR-GARCH%20Models.pdf
http://umpir.ump.edu.my/id/eprint/8976/
http://dx.doi.org/10.12988/ams.2015.5124
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Pahang
Language: English
Description
Summary:An effective way to improve forecast accuracy is to use a hybrid model. This paper proposes a hybrid model of linear autoregressive moving average (ARIMA) and non-linear GJR-GARCH model also known as TARCH in modeling and forecasting Malaysian gold. The goodness of fit of the model is measured using Akaike information criteria (AIC) while the forecasting performance is assessed using mean absolute percentage error (MAPE), bias proportion, variance proportion and covariance proportion.