Grünwald Implicit Solution of One-Dimensional Time-Fractional Parabolic Equations Using HSKSOR Iteration(Conference Paper)
This paper presents the application of a half-sweep iteration concept to the Grünwald implicit difference schemes with the Kaudd Successive Over-Relaxation (KSOR) iterative method in solving one-dimensional linear time-fractional parabolic equations. The formulation and implementation of the propose...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Institute of Physics Publishing
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://eprints.ums.edu.my/id/eprint/26819/1/Gr%C3%BCnwald%20Implicit%20Solution%20of%20One-Dimensional%20Time-Fractional%20Parabolic%20Equations%20Using%20HSKSOR%20Iteration%28Conference%20Paper%29.pdf https://eprints.ums.edu.my/id/eprint/26819/ https://www.scopus.com/record/display.uri?eid=2-s2.0-85083206645&origin=inward&txGid=fa59a0dd7790ae28a8b1c143c24700dc |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Universiti Malaysia Sabah |
اللغة: | English |
الملخص: | This paper presents the application of a half-sweep iteration concept to the Grünwald implicit difference schemes with the Kaudd Successive Over-Relaxation (KSOR) iterative method in solving one-dimensional linear time-fractional parabolic equations. The formulation and implementation of the proposed methods are discussed. In order to validate the performance of HSKSOR, comparisons are made with another two iterative methods, full-sweep KSOR (FSKSOR) and Gauss-Seidel (FSGS) iterative methods. Based on the numerical results of three tested examples, it shows that the HSKSOR is superior compared to FSKSOR and FSGS iterative methods. © Published under licence by IOP Publishing Ltd. |
---|