Enhancing the Performance of Knee Beam– Column Joint using Hybrid Fibers Reinforced Concrete
The knee beam–column joint is a critical location in a Reinforced Concrete (RC) structure particularly when subjected to earthquake vibrations. The current structural design codes dictate the use of high amounts of steel reinforcements in the frame joint to manage large strain demands in seismic-p...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Springer Science + Business Media
2021
|
Subjects: | |
Online Access: | https://eprints.ums.edu.my/id/eprint/26834/1/Enhancing%20the%20Performance%20of%20Knee%20Beam%20abstract.pdf https://eprints.ums.edu.my/id/eprint/26834/2/Enhancing%20the%20Performance%20of%20Knee%20Beam.pdf https://eprints.ums.edu.my/id/eprint/26834/ https://doi.org/10.1186/s40069-021-00457-w |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaysia Sabah |
Language: | English English |
Summary: | The knee beam–column joint is a critical location in a Reinforced Concrete (RC) structure particularly when subjected
to earthquake vibrations. The current structural design codes dictate the use of high amounts of steel reinforcements
in the frame joint to manage large strain demands in seismic-prone regions. However, these codes could result in the
congestion of steel reinforcements in the limited joint area which can consequently produce numerous construction
complications. This study aims to improve the structural performance of Knee Joint (KJ) by reducing the load induced
to the embedded steel reinforcements during seismic vibrations. Hence, this study attempted to develop a Hybrid
Fiber Reinforced Concrete (HyFRC) by combining multiple synthetic fibers to be introduced onto KJ. Six KJ specimens
were cast using five developed HyFRC materials and one Control specimen to be experimentally tested under lateral
cyclic loading. The results indicated significant improvements for the HyFRC KJ specimens particularly in energy dissipation
capacity, stiffness degradation rate, displacement ductility toughness, steel reinforcement strain and hysteretic
behavior. A total of six Finite Element (FE) KJ models were developed using the HyFRC materials to verify the results
from the experimental testing. The accuracy of the proposed FE models resulted in average percentage differences of
25.89% for peak load, 3.45% for peak load displacement and 0.18% for maximum displacements from the experimental
data. In conclusion, this study developed HyFRC materials that are beneficial in providing cost-efficient alternatives
to Reinforced Concrete (RC) KJ structures in areas with low to moderate level of seismic risks. |
---|