Fast infant pain detection method
Link to publisher's homepage at http://ieeexplore.ieee.org
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Working Paper |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2013
|
Subjects: | |
Online Access: | http://dspace.unimap.edu.my/xmlui/handle/123456789/26562 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaysia Perlis |
Language: | English |
id |
my.unimap-26562 |
---|---|
record_format |
dspace |
spelling |
my.unimap-265622013-07-10T07:47:15Z Fast infant pain detection method Muhammad Naufal, Mansor Syahryull Hi-Fi Syam, Ahmad Jamil Ahmad Kadri, Junoh Muhammad Nazri, Rejab Addzrull Hi-Fi Syam, Ahmad Jamil Jamaluddin, Ahmad apairia@yahoo.com syahrull30@yahoo.com kadri@unimap.edu.my nazri_554@yahoo.com azrulhifisyam@yahoo.com drjamaluddin@pls.moh.gov.my Detection of facial changes NICU patient Support Vector Machine classifier Link to publisher's homepage at http://ieeexplore.ieee.org within this paper, pain detection is exposed and reviewed for detecting facial changes of patient in a hospital in Neonatal Intensive Care Unit (NICU). The system propesed three stage. The first stage implements Haar Cascade detection to detect the infant face. Secondly, PCA was employed for feature extraction. The third module extracts the PCA features of faces by measuring certain dimensions of pain and no pain regions with Support Vector Machine classifier. From 300 samples of face images, it is found that the identification rate of reaches 93.18%. 2013-07-10T07:47:15Z 2013-07-10T07:47:15Z 2012-07-03 Working Paper p. 918-921 978-146730478-8 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6271350 http://hdl.handle.net/123456789/26562 en Proceedings of the International Conference on Computer and Communication Engineering (ICCCE 2012) Institute of Electrical and Electronics Engineers (IEEE) |
institution |
Universiti Malaysia Perlis |
building |
UniMAP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Perlis |
content_source |
UniMAP Library Digital Repository |
url_provider |
http://dspace.unimap.edu.my/ |
language |
English |
topic |
Detection of facial changes NICU patient Support Vector Machine classifier |
spellingShingle |
Detection of facial changes NICU patient Support Vector Machine classifier Muhammad Naufal, Mansor Syahryull Hi-Fi Syam, Ahmad Jamil Ahmad Kadri, Junoh Muhammad Nazri, Rejab Addzrull Hi-Fi Syam, Ahmad Jamil Jamaluddin, Ahmad Fast infant pain detection method |
description |
Link to publisher's homepage at http://ieeexplore.ieee.org |
author2 |
apairia@yahoo.com |
author_facet |
apairia@yahoo.com Muhammad Naufal, Mansor Syahryull Hi-Fi Syam, Ahmad Jamil Ahmad Kadri, Junoh Muhammad Nazri, Rejab Addzrull Hi-Fi Syam, Ahmad Jamil Jamaluddin, Ahmad |
format |
Working Paper |
author |
Muhammad Naufal, Mansor Syahryull Hi-Fi Syam, Ahmad Jamil Ahmad Kadri, Junoh Muhammad Nazri, Rejab Addzrull Hi-Fi Syam, Ahmad Jamil Jamaluddin, Ahmad |
author_sort |
Muhammad Naufal, Mansor |
title |
Fast infant pain detection method |
title_short |
Fast infant pain detection method |
title_full |
Fast infant pain detection method |
title_fullStr |
Fast infant pain detection method |
title_full_unstemmed |
Fast infant pain detection method |
title_sort |
fast infant pain detection method |
publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
publishDate |
2013 |
url |
http://dspace.unimap.edu.my/xmlui/handle/123456789/26562 |
_version_ |
1643794985531736064 |