Face recognition system using DCT features implemented on DSP processor

Face recognition is a challenge because the faces always change due to facial expression, direction, light, and scale. Furthermore, it needs good computing techniques for recognition in order to reduce the system’s complexity. Our approach focuses on the local feature extraction in the frequency do...

Full description

Saved in:
Bibliographic Details
Main Author: Raja Abdullah, Raja Ahmad
Other Authors: Dr. Muhammad Imran Ahmad
Format: Thesis
Language:English
Published: Universiti Malaysia Perlis (UniMAP) 2019
Subjects:
Online Access:http://dspace.unimap.edu.my:80/xmlui/handle/123456789/61574
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Perlis
Language: English
id my.unimap-61574
record_format dspace
spelling my.unimap-615742019-08-29T01:35:41Z Face recognition system using DCT features implemented on DSP processor Raja Abdullah, Raja Ahmad Dr. Muhammad Imran Ahmad Face recognition Human Face recognition (Computer science) Discrete cosine transform (DCT) Face recognition system Face recognition is a challenge because the faces always change due to facial expression, direction, light, and scale. Furthermore, it needs good computing techniques for recognition in order to reduce the system’s complexity. Our approach focuses on the local feature extraction in the frequency domain. DCT was proposed as the feature extraction algorithm for face recognition, which captures the important features in the face image and at the same time reduces the feature space. PCA then performs the feature reduction of the extracted image and produces a small size of feature vector. The propose method can reduce data dimension in feature space. The classification is done by using the Euclidean distance between the projection test and projection train images. The algorithm is tested using DSP processor and achieve a same performance with PC based. The extensive experimentations that have been carried out upon standard face databases such as ORL shows that significant performance is achieved by this method, which is 98.5% for best selected test image and 95% for the worst selected test image. Besides that, execution time is also measured, whereby to recognize 40 people, the system only requires 0.3313 second. The proposed method not only offers computational savings, but is also fast and has a high degree of recognition accuracy. 2019-08-29T01:35:40Z 2019-08-29T01:35:40Z 2015 Thesis http://dspace.unimap.edu.my:80/xmlui/handle/123456789/61574 en Universiti Malaysia Perlis (UniMAP) School of Computer and Communication Engineering
institution Universiti Malaysia Perlis
building UniMAP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Perlis
content_source UniMAP Library Digital Repository
url_provider http://dspace.unimap.edu.my/
language English
topic Face recognition
Human Face recognition (Computer science)
Discrete cosine transform (DCT)
Face recognition system
spellingShingle Face recognition
Human Face recognition (Computer science)
Discrete cosine transform (DCT)
Face recognition system
Raja Abdullah, Raja Ahmad
Face recognition system using DCT features implemented on DSP processor
description Face recognition is a challenge because the faces always change due to facial expression, direction, light, and scale. Furthermore, it needs good computing techniques for recognition in order to reduce the system’s complexity. Our approach focuses on the local feature extraction in the frequency domain. DCT was proposed as the feature extraction algorithm for face recognition, which captures the important features in the face image and at the same time reduces the feature space. PCA then performs the feature reduction of the extracted image and produces a small size of feature vector. The propose method can reduce data dimension in feature space. The classification is done by using the Euclidean distance between the projection test and projection train images. The algorithm is tested using DSP processor and achieve a same performance with PC based. The extensive experimentations that have been carried out upon standard face databases such as ORL shows that significant performance is achieved by this method, which is 98.5% for best selected test image and 95% for the worst selected test image. Besides that, execution time is also measured, whereby to recognize 40 people, the system only requires 0.3313 second. The proposed method not only offers computational savings, but is also fast and has a high degree of recognition accuracy.
author2 Dr. Muhammad Imran Ahmad
author_facet Dr. Muhammad Imran Ahmad
Raja Abdullah, Raja Ahmad
format Thesis
author Raja Abdullah, Raja Ahmad
author_sort Raja Abdullah, Raja Ahmad
title Face recognition system using DCT features implemented on DSP processor
title_short Face recognition system using DCT features implemented on DSP processor
title_full Face recognition system using DCT features implemented on DSP processor
title_fullStr Face recognition system using DCT features implemented on DSP processor
title_full_unstemmed Face recognition system using DCT features implemented on DSP processor
title_sort face recognition system using dct features implemented on dsp processor
publisher Universiti Malaysia Perlis (UniMAP)
publishDate 2019
url http://dspace.unimap.edu.my:80/xmlui/handle/123456789/61574
_version_ 1651868560584081408