Fully Automatic Detections of Abnormalities of Brain MR Images by utilizing Spatial Information and Mathematical Morphological Operators

Image segmentation refers to the process of partitioning a digital image into multiple sets of pixels are known as segments. The main goal of image segmentation is to change and simplify the representation of an image into something that is more meaningful and easier to analyze. The manual transacti...

Full description

Saved in:
Bibliographic Details
Main Authors: Arshad, Javed, Wang, Yin Chai, Abdulhameed, Rakan Alenezi, Narayanan, Kulathu Ramaiyer
Format: Article
Language:English
Published: Natural Sciences Publishing Cor. 2015
Subjects:
Online Access:http://ir.unimas.my/id/eprint/9315/1/NO%2028%20Fully%20Automatic%20Detections%20of%20Abnormalities%20of%20Brain%20MR%28abstract%29.pdf
http://ir.unimas.my/id/eprint/9315/
https://www.scopus.com/record/display.uri?eid=2-s2.0-84907228666&origin=inward&txGid=0
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Sarawak
Language: English
Description
Summary:Image segmentation refers to the process of partitioning a digital image into multiple sets of pixels are known as segments. The main goal of image segmentation is to change and simplify the representation of an image into something that is more meaningful and easier to analyze. The manual transactions for segmentation by experts is a difficult phenomena and time consuming process as well as. Most of the images in the process received are lacking of good quality. The main objective of this study is to develop a reliable mechanism to enhance the image quality and extract the abnormal portion through brain MR image accurately. A spatial filter is designed by utilizing the spatial information of the image and further to use collective information to enhance the poor quality of image(s), whereas, k-means clustering and mathematical morphological operations which extract the tumor segment from images. The proposed method is applied on different types of brain MR images for both visual and quantitative evaluations. Experimental results concluded during the practicum showed promising and reliable accuracy to open a thorough research for better future perspective of the technique developed in the article. Fully Automatic Detections of Abnormalities of Brain MR Images by utilizing Spatial Information and Mathematical Morphological Operators. Available from: http://www.researchgate.net/publication/265294217_Fully_Automatic_Detections_of_Abnormalities_of_Brain_MR_Images_by_utilizing_Spatial_Information_and_Mathematical_Morphological_Operators [accessed Nov 3, 2015].