Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch

Sugar palm (Arenga pinnata) fibres and starches are considered as agro-industrial residue in the agricultural industry. This paper aims to investigate the effect of different concentrations (0-1.0 wt%) of sugar palm nanofibrillated cellulose (SPNFCs) reinforced sugar palm starch (SPS) on morphologic...

Full description

Saved in:
Bibliographic Details
Main Authors: Ilyas, R.A., Sapuan, S.M., Ibrahim, R., Abral, H., Ishak, M.R., Zainudin, E.S., Atikah, M.S.N., Mohd Nurazzi, N., Atiqah, A., Ansari, M.N.M., Syafri, E., Asrofi, M., Sari, N.H., Jumaidin, R.
Format: Article
Language:English
Published: 2020
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Tenaga Nasional
Language: English
id my.uniten.dspace-13210
record_format dspace
spelling my.uniten.dspace-132102020-07-03T07:54:36Z Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch Ilyas, R.A. Sapuan, S.M. Ibrahim, R. Abral, H. Ishak, M.R. Zainudin, E.S. Atikah, M.S.N. Mohd Nurazzi, N. Atiqah, A. Ansari, M.N.M. Syafri, E. Asrofi, M. Sari, N.H. Jumaidin, R. Sugar palm (Arenga pinnata) fibres and starches are considered as agro-industrial residue in the agricultural industry. This paper aims to investigate the effect of different concentrations (0-1.0 wt%) of sugar palm nanofibrillated cellulose (SPNFCs) reinforced sugar palm starch (SPS) on morphological, mechanical and physical properties of the bionanocomposites film. The SPNFCs, having a diameter of 5.5 ± 0.99 nm and length of several micrometres, were prepared from sugar palm fibres via a high-pressure homogenisation process. FESEM investigation of casting solution displayed good miscibility between SPS and SPNFCs. The FTIR analysis revealed good compatibility between the SPS and SPNFCs, and there were existence of intermolecular hydrogen bonds between them. The SPS/sPNFCs with 1.0 wt% had undergone an increment in both the tensile strength and Young's modulus when compared with the SPS film, from 4.80 MPa to 10.68 MPa and 53.97 MPa to 121.26 MPa, respectively. The enhancement in water barrier resistance was led by reinforcing SPNFCs into the matrix, which resulted in bionanocomposites. The properties of bionanocomposites will be enhanced for short-life applications, such as recyclable container and plastic packaging through the incorporation of SPNFCs within the SPS bionanocomposites. © 2019 The Authors. 2020-02-03T03:31:07Z 2020-02-03T03:31:07Z 2019 Article 10.1016/j.jmrt.2019.08.028 en
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
language English
description Sugar palm (Arenga pinnata) fibres and starches are considered as agro-industrial residue in the agricultural industry. This paper aims to investigate the effect of different concentrations (0-1.0 wt%) of sugar palm nanofibrillated cellulose (SPNFCs) reinforced sugar palm starch (SPS) on morphological, mechanical and physical properties of the bionanocomposites film. The SPNFCs, having a diameter of 5.5 ± 0.99 nm and length of several micrometres, were prepared from sugar palm fibres via a high-pressure homogenisation process. FESEM investigation of casting solution displayed good miscibility between SPS and SPNFCs. The FTIR analysis revealed good compatibility between the SPS and SPNFCs, and there were existence of intermolecular hydrogen bonds between them. The SPS/sPNFCs with 1.0 wt% had undergone an increment in both the tensile strength and Young's modulus when compared with the SPS film, from 4.80 MPa to 10.68 MPa and 53.97 MPa to 121.26 MPa, respectively. The enhancement in water barrier resistance was led by reinforcing SPNFCs into the matrix, which resulted in bionanocomposites. The properties of bionanocomposites will be enhanced for short-life applications, such as recyclable container and plastic packaging through the incorporation of SPNFCs within the SPS bionanocomposites. © 2019 The Authors.
format Article
author Ilyas, R.A.
Sapuan, S.M.
Ibrahim, R.
Abral, H.
Ishak, M.R.
Zainudin, E.S.
Atikah, M.S.N.
Mohd Nurazzi, N.
Atiqah, A.
Ansari, M.N.M.
Syafri, E.
Asrofi, M.
Sari, N.H.
Jumaidin, R.
spellingShingle Ilyas, R.A.
Sapuan, S.M.
Ibrahim, R.
Abral, H.
Ishak, M.R.
Zainudin, E.S.
Atikah, M.S.N.
Mohd Nurazzi, N.
Atiqah, A.
Ansari, M.N.M.
Syafri, E.
Asrofi, M.
Sari, N.H.
Jumaidin, R.
Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch
author_facet Ilyas, R.A.
Sapuan, S.M.
Ibrahim, R.
Abral, H.
Ishak, M.R.
Zainudin, E.S.
Atikah, M.S.N.
Mohd Nurazzi, N.
Atiqah, A.
Ansari, M.N.M.
Syafri, E.
Asrofi, M.
Sari, N.H.
Jumaidin, R.
author_sort Ilyas, R.A.
title Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch
title_short Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch
title_full Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch
title_fullStr Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch
title_full_unstemmed Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch
title_sort effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (arenga pinnata(wurmb.) merr) starch
publishDate 2020
_version_ 1672614215113768960