Carbon dioxide reforming of methane over Ni-based catalysts: Modeling the effect of process parameters on greenhouse gasses conversion using supervised machine learning algorithms

Catalysts; Conjugate gradient method; Learning algorithms; Methane; Multilayer neural networks; Multilayers; Sensitivity analysis; Supervised learning; Auto-regressive; Bayesian regularization; CH$-4$; Greenhouse gasse; Multilayers perceptrons; Neural-networks; Nonlinear autoregressive exogenous; Pe...

Full description

Saved in:
Bibliographic Details
Main Authors: Ayodele B.V., Alsaffar M.A., Mustapa S.I., Kanthasamy R., Wongsakulphasatch S., Cheng C.K.
Other Authors: 56862160400
Format: Article
Published: Elsevier B.V. 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Tenaga Nasional
Description
Summary:Catalysts; Conjugate gradient method; Learning algorithms; Methane; Multilayer neural networks; Multilayers; Sensitivity analysis; Supervised learning; Auto-regressive; Bayesian regularization; CH$-4$; Greenhouse gasse; Multilayers perceptrons; Neural-networks; Nonlinear autoregressive exogenous; Performance; Process parameters; Supervised machine learning; Carbon dioxide