Numerical insights into the influence of electrical properties of n-CdS buffer layer on the performance of SLG/Mo/p-absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices

A CdS thin film buffer layer has been widely used as conventional n-type heterojunction partner both in established and emerging thin film photovoltaic devices. In this study, we perform numerical simulation to elucidate the influence of electrical properties of the CdS buffer layer, essentially in...

Full description

Saved in:
Bibliographic Details
Main Authors: Najm A.S., Chelvanathan P., Tiong S.K., Ferdaous M.T., Shahahmadi S.A., Yusoff Y., Sopian K., Amin N.
Other Authors: 57194407055
Format: Article
Published: MDPI AG 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Tenaga Nasional
id my.uniten.dspace-26600
record_format dspace
spelling my.uniten.dspace-266002023-05-29T17:12:34Z Numerical insights into the influence of electrical properties of n-CdS buffer layer on the performance of SLG/Mo/p-absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices Najm A.S. Chelvanathan P. Tiong S.K. Ferdaous M.T. Shahahmadi S.A. Yusoff Y. Sopian K. Amin N. 57194407055 35766323200 15128307800 55567613100 55567116600 57206844407 7003375391 7102424614 A CdS thin film buffer layer has been widely used as conventional n-type heterojunction partner both in established and emerging thin film photovoltaic devices. In this study, we perform numerical simulation to elucidate the influence of electrical properties of the CdS buffer layer, essentially in terms of carrier mobility and carrier concentration on the performance of SLG/Mo/p- Absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices, by using the Solar Cell Capacitance Simulator (SCAPS-1D). A wide range of p-type absorber layers with a band gap from 0.9 to 1.7 eV and electron affinity from 3.7 to 4.7 eV have been considered in this simulation study. For an ideal absorber layer (no defect), the carrier mobility and carrier concentration of CdS buffer layer do not significantly alter the maximum attainable efficiency. Generally, it was revealed that for an absorber layer with a conduction band offset (CBO) that is more than 0.3 eV, Jsc is strongly dependent on the carrier mobility and carrier concentration of the CdS buffer layer, whereas Voc is predominantly dependent on the back contact barrier height. However, as the bulk defect density of the absorber layer is increased from 1014 to 1018 cm-3, a CdS buffer layer with higher carrier mobility and carrier concentration is an imperative requirement to a yield device with higher conversion efficiency and a larger band gap-CBO window for realization of a functional device. Most tellingly, simulation outcomes from this study reveal that electrical properties of the CdS buffer layer play a decisive role in determining the progress of emerging p-type photo-absorber layer materials, particularly during the embryonic device development stage. � 2021 by the authors. Final 2023-05-29T09:12:34Z 2023-05-29T09:12:34Z 2021 Article 10.3390/coatings11010052 2-s2.0-85099645613 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099645613&doi=10.3390%2fcoatings11010052&partnerID=40&md5=1036e398c22967d01ffe0767e5558bdb https://irepository.uniten.edu.my/handle/123456789/26600 11 1 52 1 17 All Open Access, Gold MDPI AG Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description A CdS thin film buffer layer has been widely used as conventional n-type heterojunction partner both in established and emerging thin film photovoltaic devices. In this study, we perform numerical simulation to elucidate the influence of electrical properties of the CdS buffer layer, essentially in terms of carrier mobility and carrier concentration on the performance of SLG/Mo/p- Absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices, by using the Solar Cell Capacitance Simulator (SCAPS-1D). A wide range of p-type absorber layers with a band gap from 0.9 to 1.7 eV and electron affinity from 3.7 to 4.7 eV have been considered in this simulation study. For an ideal absorber layer (no defect), the carrier mobility and carrier concentration of CdS buffer layer do not significantly alter the maximum attainable efficiency. Generally, it was revealed that for an absorber layer with a conduction band offset (CBO) that is more than 0.3 eV, Jsc is strongly dependent on the carrier mobility and carrier concentration of the CdS buffer layer, whereas Voc is predominantly dependent on the back contact barrier height. However, as the bulk defect density of the absorber layer is increased from 1014 to 1018 cm-3, a CdS buffer layer with higher carrier mobility and carrier concentration is an imperative requirement to a yield device with higher conversion efficiency and a larger band gap-CBO window for realization of a functional device. Most tellingly, simulation outcomes from this study reveal that electrical properties of the CdS buffer layer play a decisive role in determining the progress of emerging p-type photo-absorber layer materials, particularly during the embryonic device development stage. � 2021 by the authors.
author2 57194407055
author_facet 57194407055
Najm A.S.
Chelvanathan P.
Tiong S.K.
Ferdaous M.T.
Shahahmadi S.A.
Yusoff Y.
Sopian K.
Amin N.
format Article
author Najm A.S.
Chelvanathan P.
Tiong S.K.
Ferdaous M.T.
Shahahmadi S.A.
Yusoff Y.
Sopian K.
Amin N.
spellingShingle Najm A.S.
Chelvanathan P.
Tiong S.K.
Ferdaous M.T.
Shahahmadi S.A.
Yusoff Y.
Sopian K.
Amin N.
Numerical insights into the influence of electrical properties of n-CdS buffer layer on the performance of SLG/Mo/p-absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices
author_sort Najm A.S.
title Numerical insights into the influence of electrical properties of n-CdS buffer layer on the performance of SLG/Mo/p-absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices
title_short Numerical insights into the influence of electrical properties of n-CdS buffer layer on the performance of SLG/Mo/p-absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices
title_full Numerical insights into the influence of electrical properties of n-CdS buffer layer on the performance of SLG/Mo/p-absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices
title_fullStr Numerical insights into the influence of electrical properties of n-CdS buffer layer on the performance of SLG/Mo/p-absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices
title_full_unstemmed Numerical insights into the influence of electrical properties of n-CdS buffer layer on the performance of SLG/Mo/p-absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices
title_sort numerical insights into the influence of electrical properties of n-cds buffer layer on the performance of slg/mo/p-absorber/n-cds/n-zno/ag configured thin film photovoltaic devices
publisher MDPI AG
publishDate 2023
_version_ 1806427986713378816