Modeling Ground Level Ozone (O3) of Air Pollution Using Regression Technique

Introduction: Ground-level ozone (O3) was a secondary pollutant involving several types of reactions arising from complicated atmospheric chemistry. This research utilized statistical equations to discern the complex influence of meteorological parameters and precursor contaminants influencing O3 ch...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad A.N., Abdullah S., Dom N.C., Mansor A.A., Yusof K.M.K.K., Ahmed A.N., Prabamroong T., Ismail M.
Other Authors: 57810266500
Format: Article
Published: Universiti Putra Malaysia Press 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Tenaga Nasional
id my.uniten.dspace-26850
record_format dspace
spelling my.uniten.dspace-268502023-05-29T17:37:13Z Modeling Ground Level Ozone (O3) of Air Pollution Using Regression Technique Ahmad A.N. Abdullah S. Dom N.C. Mansor A.A. Yusof K.M.K.K. Ahmed A.N. Prabamroong T. Ismail M. 57810266500 56509029800 57217286875 57211858557 57217119888 57214837520 55520774800 57210403363 Introduction: Ground-level ozone (O3) was a secondary pollutant involving several types of reactions arising from complicated atmospheric chemistry. This research utilized statistical equations to discern the complex influence of meteorological parameters and precursor contaminants influencing O3 chemistry and concentrations. The goal of this study was to predict ozone (O3) concentrations in Nilai, Negeri Sembilan. Methods: Data were collected from 1 January 2016 until 31 December 2018 that including ozone (O3), nitrogen oxide (NOx), nitric oxide (NO), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), temperature, and relative humidity (RH). The data were analyzed by using Multiple Linear Regression (MLR) in predicting the next hours of O3 concentration. Results: O3 concentration reached its peak during 15:00 hours and lower at night time (20:00 hours) due to the absence of sunlight and redox reactions. There exists strong significant correlation between O3 and temperature (r= 0.729, p<0.01), relative humidity (r= -0.732, p<0.01), NOx (r= -0.654, p<0.01), NO (r= -0.630, p<0.01) and NO2 (r= -0.535, p<0.01). Meanwhile, MLR models executed high accuracy for O3,t+1 (R2= 0.5565), O3,t+2 (R2= 0.5326) and O3,t+3 (R2= 0.5197). Conclusion: In conclusion, the MLR model is suitable for the next hours O concentration prediction. � 2022 UPM Press. All rights reserved. Final 2023-05-29T09:37:13Z 2023-05-29T09:37:13Z 2022 Article 10.47836/mjmhs18.8.14 2-s2.0-85134487625 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134487625&doi=10.47836%2fmjmhs18.8.14&partnerID=40&md5=1773f5a5e8c7031bbba77f150b8f6273 https://irepository.uniten.edu.my/handle/123456789/26850 18 8 97 103 Universiti Putra Malaysia Press Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Introduction: Ground-level ozone (O3) was a secondary pollutant involving several types of reactions arising from complicated atmospheric chemistry. This research utilized statistical equations to discern the complex influence of meteorological parameters and precursor contaminants influencing O3 chemistry and concentrations. The goal of this study was to predict ozone (O3) concentrations in Nilai, Negeri Sembilan. Methods: Data were collected from 1 January 2016 until 31 December 2018 that including ozone (O3), nitrogen oxide (NOx), nitric oxide (NO), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), temperature, and relative humidity (RH). The data were analyzed by using Multiple Linear Regression (MLR) in predicting the next hours of O3 concentration. Results: O3 concentration reached its peak during 15:00 hours and lower at night time (20:00 hours) due to the absence of sunlight and redox reactions. There exists strong significant correlation between O3 and temperature (r= 0.729, p<0.01), relative humidity (r= -0.732, p<0.01), NOx (r= -0.654, p<0.01), NO (r= -0.630, p<0.01) and NO2 (r= -0.535, p<0.01). Meanwhile, MLR models executed high accuracy for O3,t+1 (R2= 0.5565), O3,t+2 (R2= 0.5326) and O3,t+3 (R2= 0.5197). Conclusion: In conclusion, the MLR model is suitable for the next hours O concentration prediction. � 2022 UPM Press. All rights reserved.
author2 57810266500
author_facet 57810266500
Ahmad A.N.
Abdullah S.
Dom N.C.
Mansor A.A.
Yusof K.M.K.K.
Ahmed A.N.
Prabamroong T.
Ismail M.
format Article
author Ahmad A.N.
Abdullah S.
Dom N.C.
Mansor A.A.
Yusof K.M.K.K.
Ahmed A.N.
Prabamroong T.
Ismail M.
spellingShingle Ahmad A.N.
Abdullah S.
Dom N.C.
Mansor A.A.
Yusof K.M.K.K.
Ahmed A.N.
Prabamroong T.
Ismail M.
Modeling Ground Level Ozone (O3) of Air Pollution Using Regression Technique
author_sort Ahmad A.N.
title Modeling Ground Level Ozone (O3) of Air Pollution Using Regression Technique
title_short Modeling Ground Level Ozone (O3) of Air Pollution Using Regression Technique
title_full Modeling Ground Level Ozone (O3) of Air Pollution Using Regression Technique
title_fullStr Modeling Ground Level Ozone (O3) of Air Pollution Using Regression Technique
title_full_unstemmed Modeling Ground Level Ozone (O3) of Air Pollution Using Regression Technique
title_sort modeling ground level ozone (o3) of air pollution using regression technique
publisher Universiti Putra Malaysia Press
publishDate 2023
_version_ 1806427300191797248