Online signature verification using neural network and pearson correlation features
In this paper, we proposed a method for feature extraction in online signature verification. We first used signature coordinate points and pen pressure of all signatures, which are available in the SIGMA database. Then, Pearson correlation coefficients were selected for feature extraction. The obtai...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference paper |
Published: |
IEEE Computer Society
2023
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tenaga Nasional |
Summary: | In this paper, we proposed a method for feature extraction in online signature verification. We first used signature coordinate points and pen pressure of all signatures, which are available in the SIGMA database. Then, Pearson correlation coefficients were selected for feature extraction. The obtained features were used in back-propagation neural network for verification. The results indicate an accuracy of 82.42%. � 2013 IEEE. |
---|