Statistical modeling of solar cell using Taguchi method and TCAD tool
This paper focuses on optimizing silicon based solar cell fabrication using Taguchi Optimization Method (TOM). Optimization focused on 3 parameters namely doping concentration of boron, creating phosphorus PN-junction and energy used for ion-implantation with 2 noise factors, Diffuse time and diffus...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference paper |
Published: |
2023
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tenaga Nasional |
id |
my.uniten.dspace-30290 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-302902023-12-29T15:46:22Z Statistical modeling of solar cell using Taguchi method and TCAD tool Bahrudin M.S. Abdullah S.F. Ahmad I. 55603412800 14319069500 12792216600 ion-implantation and Silvaco TCAD software PN-junction Solar cell Taguchi Optimization Method Boron Computer simulation Experiments Optimization Phosphorus Semiconductor doping Signal to noise ratio Silicon solar cells Solar cells Taguchi methods Testing Best value Doping concentration Electrical testing Fill factor Junction depth Noise factor Orthogonal array P-n junction Recombination process Shallow junction Silicon-based Silvaco Simulation environment Solar cell fabrication Statistical modeling Taguchi optimization method TCAD software Semiconductor junctions This paper focuses on optimizing silicon based solar cell fabrication using Taguchi Optimization Method (TOM). Optimization focused on 3 parameters namely doping concentration of boron, creating phosphorus PN-junction and energy used for ion-implantation with 2 noise factors, Diffuse time and diffuse temperature. The aim is to have a shallow junction in order to decrease the recombination process but higher fill factor (FF) for better efficiency. Fabricating are done in computer simulation environment by Silvaco TCAD software that also conducting an electrical testing for measurement. Each factor (product from the parameters through TOM) has 2 levels of best values taken from the previous researches. In this research, L8 orthogonal array consists of 8 set of different combination of experiment has been done. Optimized values are analyzed by finding Signal to Noise Ratio (SNR) of each experiment and applied it on Larger the Better (LTB) for highest FF and Smaller the Better (STB) for shallowest junction depth. Result reveal that boron at concentration of 5.0�10 15 cm-3, phosphorus at concentration of 2.0�10 16 cm-3, and energy at 10 keV gave a result of 0.3 um ? 0.5 um for junction depth and stable FF value of 0.8 at any noise factor contributing efficiency of 15% to 16%. As a conclusion, TOM has achieved predicting the best solution for optimizing silicon solar cell fabrication. � 2012 IEEE. Final 2023-12-29T07:46:22Z 2023-12-29T07:46:22Z 2012 Conference paper 10.1109/SMElec.2012.6417073 2-s2.0-84874136502 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874136502&doi=10.1109%2fSMElec.2012.6417073&partnerID=40&md5=ddff966877bd5577b3d5a20fd74438cc https://irepository.uniten.edu.my/handle/123456789/30290 6417073 1 5 Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
topic |
ion-implantation and Silvaco TCAD software PN-junction Solar cell Taguchi Optimization Method Boron Computer simulation Experiments Optimization Phosphorus Semiconductor doping Signal to noise ratio Silicon solar cells Solar cells Taguchi methods Testing Best value Doping concentration Electrical testing Fill factor Junction depth Noise factor Orthogonal array P-n junction Recombination process Shallow junction Silicon-based Silvaco Simulation environment Solar cell fabrication Statistical modeling Taguchi optimization method TCAD software Semiconductor junctions |
spellingShingle |
ion-implantation and Silvaco TCAD software PN-junction Solar cell Taguchi Optimization Method Boron Computer simulation Experiments Optimization Phosphorus Semiconductor doping Signal to noise ratio Silicon solar cells Solar cells Taguchi methods Testing Best value Doping concentration Electrical testing Fill factor Junction depth Noise factor Orthogonal array P-n junction Recombination process Shallow junction Silicon-based Silvaco Simulation environment Solar cell fabrication Statistical modeling Taguchi optimization method TCAD software Semiconductor junctions Bahrudin M.S. Abdullah S.F. Ahmad I. Statistical modeling of solar cell using Taguchi method and TCAD tool |
description |
This paper focuses on optimizing silicon based solar cell fabrication using Taguchi Optimization Method (TOM). Optimization focused on 3 parameters namely doping concentration of boron, creating phosphorus PN-junction and energy used for ion-implantation with 2 noise factors, Diffuse time and diffuse temperature. The aim is to have a shallow junction in order to decrease the recombination process but higher fill factor (FF) for better efficiency. Fabricating are done in computer simulation environment by Silvaco TCAD software that also conducting an electrical testing for measurement. Each factor (product from the parameters through TOM) has 2 levels of best values taken from the previous researches. In this research, L8 orthogonal array consists of 8 set of different combination of experiment has been done. Optimized values are analyzed by finding Signal to Noise Ratio (SNR) of each experiment and applied it on Larger the Better (LTB) for highest FF and Smaller the Better (STB) for shallowest junction depth. Result reveal that boron at concentration of 5.0�10 15 cm-3, phosphorus at concentration of 2.0�10 16 cm-3, and energy at 10 keV gave a result of 0.3 um ? 0.5 um for junction depth and stable FF value of 0.8 at any noise factor contributing efficiency of 15% to 16%. As a conclusion, TOM has achieved predicting the best solution for optimizing silicon solar cell fabrication. � 2012 IEEE. |
author2 |
55603412800 |
author_facet |
55603412800 Bahrudin M.S. Abdullah S.F. Ahmad I. |
format |
Conference paper |
author |
Bahrudin M.S. Abdullah S.F. Ahmad I. |
author_sort |
Bahrudin M.S. |
title |
Statistical modeling of solar cell using Taguchi method and TCAD tool |
title_short |
Statistical modeling of solar cell using Taguchi method and TCAD tool |
title_full |
Statistical modeling of solar cell using Taguchi method and TCAD tool |
title_fullStr |
Statistical modeling of solar cell using Taguchi method and TCAD tool |
title_full_unstemmed |
Statistical modeling of solar cell using Taguchi method and TCAD tool |
title_sort |
statistical modeling of solar cell using taguchi method and tcad tool |
publishDate |
2023 |
_version_ |
1806424528034725888 |