Photovoltaic Power Prediction Using Analytical Models and Homer-Pro: Investigation of Results Reliability

This paper aims to develop an analytical model for the prediction of the electricity produced in a Photovoltaic Power Station (PVS). In this context, the developed mathematical model is implemented in a Simulink Model. The obtained simulation results are compared to the experimental data, the result...

Full description

Saved in:
Bibliographic Details
Main Authors: Alhousni F.K., Alnaimi F.B.I., Okonkwo P.C., Ben Belgacem I., Mohamed H., Barhoumi E.M.
Other Authors: 57215064807
Format: Article
Published: MDPI 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Tenaga Nasional
Description
Summary:This paper aims to develop an analytical model for the prediction of the electricity produced in a Photovoltaic Power Station (PVS). In this context, the developed mathematical model is implemented in a Simulink Model. The obtained simulation results are compared to the experimental data, the results obtained from the software Homer-Pro model, and the results given by the online PV calculator (Photovoltaic Geographical Information System), developed by the European commission. The comparison results show the reliability of the developed analytical model for specific months of the year. However, an error of 10% between simulations and experimental results is observed for July and August. This error is mainly due to the effects of humidity and dust that were not considered in the analytical model. Nevertheless, the monthly and yearly produced electricity values show the robustness of the proposed model to predict the PVS generated power. The developed model will be used as a powerful tool for data prediction and the optimization of electricity generation. This permits us to reduce the losses in power generation by optimizing the connected generating power stations to the power grid. � 2023 by the authors.