A Study on Heat Generation of Lithium-Ion Battery Used in Electric Vehicles by Simulation and Experiment
Lithium-ion battery is commonly used for electric vehicles because it has a good lifespan and has low discharge rate. However, the LIB easily gets heated up gradually as it discharges. The rise in battery temperature is a major concern that needs to be focused on due to the safety aspect. Therefore,...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference Paper |
Published: |
Springer Science and Business Media Deutschland GmbH
2024
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tenaga Nasional |
id |
my.uniten.dspace-34483 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-344832024-10-14T11:20:06Z A Study on Heat Generation of Lithium-Ion Battery Used in Electric Vehicles by Simulation and Experiment Selvararajoo K. Wanatasanappan V.V. Luon N.Y. 58656100600 57217224948 58482945800 Charging Discharging Lithium-ion battery Temperature rise Battery management systems Charging (batteries) Electric discharges Electric vehicles Equivalent circuits Heat generation Ions MATLAB Battery systems Charging Charging process Depth of discharges Discharge rates Discharging Lifespans States of charges Temperature rise Thermal behaviours Lithium-ion batteries Lithium-ion battery is commonly used for electric vehicles because it has a good lifespan and has low discharge rate. However, the LIB easily gets heated up gradually as it discharges. The rise in battery temperature is a major concern that needs to be focused on due to the safety aspect. Therefore, the thermal behaviour of LIB is simulated and analysed in this study. The equivalent circuit of the Panasonic 18,650 LIB cell is designed in MATLAB using SIMULINK. Then, the battery system is run at an ambient temperature of 25��C to simulate the heat production of the charging and discharging process at different discharge rates of 0.5C, 1C and 3C. On the other hand, an experiment with a battery system was conducted to check the temperature rise at the same current rate. The temperature rise graph against the state of charge (SOC) for charging and depth of discharge (DOD) for discharging are obtained at 0.5C, 1C and 3C by both simulation and experiment, and thermal behaviour is analysed. In conclusion, heat generation during battery discharging is higher than the charging process, particularly when conducting the experiment. Overall, both charging and discharging the temperature rise are directly proportional to the SOC and DOD, respectively. � 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. Final 2024-10-14T03:20:06Z 2024-10-14T03:20:06Z 2023 Conference Paper 10.1007/978-3-031-33906-6_19 2-s2.0-85174513382 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174513382&doi=10.1007%2f978-3-031-33906-6_19&partnerID=40&md5=cc4951e180ca217d8cb2652e083915fb https://irepository.uniten.edu.my/handle/123456789/34483 215 223 Springer Science and Business Media Deutschland GmbH Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
topic |
Charging Discharging Lithium-ion battery Temperature rise Battery management systems Charging (batteries) Electric discharges Electric vehicles Equivalent circuits Heat generation Ions MATLAB Battery systems Charging Charging process Depth of discharges Discharge rates Discharging Lifespans States of charges Temperature rise Thermal behaviours Lithium-ion batteries |
spellingShingle |
Charging Discharging Lithium-ion battery Temperature rise Battery management systems Charging (batteries) Electric discharges Electric vehicles Equivalent circuits Heat generation Ions MATLAB Battery systems Charging Charging process Depth of discharges Discharge rates Discharging Lifespans States of charges Temperature rise Thermal behaviours Lithium-ion batteries Selvararajoo K. Wanatasanappan V.V. Luon N.Y. A Study on Heat Generation of Lithium-Ion Battery Used in Electric Vehicles by Simulation and Experiment |
description |
Lithium-ion battery is commonly used for electric vehicles because it has a good lifespan and has low discharge rate. However, the LIB easily gets heated up gradually as it discharges. The rise in battery temperature is a major concern that needs to be focused on due to the safety aspect. Therefore, the thermal behaviour of LIB is simulated and analysed in this study. The equivalent circuit of the Panasonic 18,650 LIB cell is designed in MATLAB using SIMULINK. Then, the battery system is run at an ambient temperature of 25��C to simulate the heat production of the charging and discharging process at different discharge rates of 0.5C, 1C and 3C. On the other hand, an experiment with a battery system was conducted to check the temperature rise at the same current rate. The temperature rise graph against the state of charge (SOC) for charging and depth of discharge (DOD) for discharging are obtained at 0.5C, 1C and 3C by both simulation and experiment, and thermal behaviour is analysed. In conclusion, heat generation during battery discharging is higher than the charging process, particularly when conducting the experiment. Overall, both charging and discharging the temperature rise are directly proportional to the SOC and DOD, respectively. � 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. |
author2 |
58656100600 |
author_facet |
58656100600 Selvararajoo K. Wanatasanappan V.V. Luon N.Y. |
format |
Conference Paper |
author |
Selvararajoo K. Wanatasanappan V.V. Luon N.Y. |
author_sort |
Selvararajoo K. |
title |
A Study on Heat Generation of Lithium-Ion Battery Used in Electric Vehicles by Simulation and Experiment |
title_short |
A Study on Heat Generation of Lithium-Ion Battery Used in Electric Vehicles by Simulation and Experiment |
title_full |
A Study on Heat Generation of Lithium-Ion Battery Used in Electric Vehicles by Simulation and Experiment |
title_fullStr |
A Study on Heat Generation of Lithium-Ion Battery Used in Electric Vehicles by Simulation and Experiment |
title_full_unstemmed |
A Study on Heat Generation of Lithium-Ion Battery Used in Electric Vehicles by Simulation and Experiment |
title_sort |
study on heat generation of lithium-ion battery used in electric vehicles by simulation and experiment |
publisher |
Springer Science and Business Media Deutschland GmbH |
publishDate |
2024 |
_version_ |
1814061122451406848 |