High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit
High bandwidth, uncooled, Indium Arsenide (InAs) electron avalanche photodiodes (e-APDs) with unique and highly desirable characteristics are reported. The e-APDs exhibit a 3dB bandwidth of 3.5 GHz which, unlike that of conventional APDs, is shown not to reduce with increasing avalanche gain. Hence...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | en_US |
Published: |
2017
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tenaga Nasional |
Language: | en_US |
Summary: | High bandwidth, uncooled, Indium Arsenide (InAs) electron avalanche photodiodes (e-APDs) with unique and highly desirable characteristics are reported. The e-APDs exhibit a 3dB bandwidth of 3.5 GHz which, unlike that of conventional APDs, is shown not to reduce with increasing avalanche gain. Hence these InAs e-APDs demonstrate a characteristic of theoretically ideal electron only APDs, the absence of a gain-bandwidth product limit. This is important because gain-bandwidth products restrict the maximum exploitable gain in all conventional high bandwidth APDs. Non-limiting gain-bandwidth products up to 580 GHz have been measured on these first high bandwidth e-APDs. © 2011 Optical Society of America. |
---|