Increment of insecure RSA private exponent bound through perfect square RSA diophantine parameters cryptanalysis

The public parameters of the RSA cryptosystem are represented by the pair of integers N and e. In this work, first we show that if e satisfies the Diophantine equation of the form ex2−ϕ(N)y2=z for appropriate values of x,y and z under certain specified conditions, then one is able to factor N. That...

Full description

Saved in:
Bibliographic Details
Main Authors: Wan Mohd Ruzai, Wan Nur Aqlili, Nitaj, Abderrahmane, Kamel Ariffin, Muhammad Rezal, Mahad, Zahari, Asbullah, Muhammad Asyraf
Format: Article
Published: Elsevier 2022
Online Access:http://psasir.upm.edu.my/id/eprint/101837/
https://www.sciencedirect.com/science/article/pii/S0920548921000799
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
id my.upm.eprints.101837
record_format eprints
spelling my.upm.eprints.1018372023-07-12T01:55:18Z http://psasir.upm.edu.my/id/eprint/101837/ Increment of insecure RSA private exponent bound through perfect square RSA diophantine parameters cryptanalysis Wan Mohd Ruzai, Wan Nur Aqlili Nitaj, Abderrahmane Kamel Ariffin, Muhammad Rezal Mahad, Zahari Asbullah, Muhammad Asyraf The public parameters of the RSA cryptosystem are represented by the pair of integers N and e. In this work, first we show that if e satisfies the Diophantine equation of the form ex2−ϕ(N)y2=z for appropriate values of x,y and z under certain specified conditions, then one is able to factor N. That is, the unknown [Formula presented] can be found amongst the convergents of [Formula presented] via continued fractions algorithm. Consequently, Coppersmith's theorem is applied to solve for prime factors p and q in polynomial time. We also report a second weakness that enabled us to factor k instances of RSA moduli simultaneously from the given (Ni,ei) for i=1,2,⋯,k and a fixed x that fulfills the Diophantine equation eix2−yi2ϕ(Ni)=zi. This weakness was identified by solving the simultaneous Diophantine approximations using the lattice basis reduction technique. We note that this work extends the bound of insecure RSA decryption exponents. Elsevier 2022 Article PeerReviewed Wan Mohd Ruzai, Wan Nur Aqlili and Nitaj, Abderrahmane and Kamel Ariffin, Muhammad Rezal and Mahad, Zahari and Asbullah, Muhammad Asyraf (2022) Increment of insecure RSA private exponent bound through perfect square RSA diophantine parameters cryptanalysis. Computer Standards & Interfaces, 80. pp. 1-10. ISSN 0920-5489; ESSN: 1872-7018 https://www.sciencedirect.com/science/article/pii/S0920548921000799 10.1016/j.csi.2021.103584
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
description The public parameters of the RSA cryptosystem are represented by the pair of integers N and e. In this work, first we show that if e satisfies the Diophantine equation of the form ex2−ϕ(N)y2=z for appropriate values of x,y and z under certain specified conditions, then one is able to factor N. That is, the unknown [Formula presented] can be found amongst the convergents of [Formula presented] via continued fractions algorithm. Consequently, Coppersmith's theorem is applied to solve for prime factors p and q in polynomial time. We also report a second weakness that enabled us to factor k instances of RSA moduli simultaneously from the given (Ni,ei) for i=1,2,⋯,k and a fixed x that fulfills the Diophantine equation eix2−yi2ϕ(Ni)=zi. This weakness was identified by solving the simultaneous Diophantine approximations using the lattice basis reduction technique. We note that this work extends the bound of insecure RSA decryption exponents.
format Article
author Wan Mohd Ruzai, Wan Nur Aqlili
Nitaj, Abderrahmane
Kamel Ariffin, Muhammad Rezal
Mahad, Zahari
Asbullah, Muhammad Asyraf
spellingShingle Wan Mohd Ruzai, Wan Nur Aqlili
Nitaj, Abderrahmane
Kamel Ariffin, Muhammad Rezal
Mahad, Zahari
Asbullah, Muhammad Asyraf
Increment of insecure RSA private exponent bound through perfect square RSA diophantine parameters cryptanalysis
author_facet Wan Mohd Ruzai, Wan Nur Aqlili
Nitaj, Abderrahmane
Kamel Ariffin, Muhammad Rezal
Mahad, Zahari
Asbullah, Muhammad Asyraf
author_sort Wan Mohd Ruzai, Wan Nur Aqlili
title Increment of insecure RSA private exponent bound through perfect square RSA diophantine parameters cryptanalysis
title_short Increment of insecure RSA private exponent bound through perfect square RSA diophantine parameters cryptanalysis
title_full Increment of insecure RSA private exponent bound through perfect square RSA diophantine parameters cryptanalysis
title_fullStr Increment of insecure RSA private exponent bound through perfect square RSA diophantine parameters cryptanalysis
title_full_unstemmed Increment of insecure RSA private exponent bound through perfect square RSA diophantine parameters cryptanalysis
title_sort increment of insecure rsa private exponent bound through perfect square rsa diophantine parameters cryptanalysis
publisher Elsevier
publishDate 2022
url http://psasir.upm.edu.my/id/eprint/101837/
https://www.sciencedirect.com/science/article/pii/S0920548921000799
_version_ 1772813425169137664