Binary ant colony optimization algorithm in learning random satisfiability logic for discrete hopfield neural network
This study introduced a novel ant colony optimization algorithm that implements the population selection strategy of the Estimation of Distribution Algorithm and a new pheromone updating formula. It aimed to optimize the performance of G-type random high-order satisfiability logic structures embedde...
Saved in:
Main Authors: | , , , , , , |
---|---|
格式: | Article |
語言: | English |
出版: |
Elsevier
2024
|
在線閱讀: | http://psasir.upm.edu.my/id/eprint/114433/1/114433.pdf http://psasir.upm.edu.my/id/eprint/114433/ https://linkinghub.elsevier.com/retrieve/pii/S1568494624009669 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Universiti Putra Malaysia |
語言: | English |