Binary ant colony optimization algorithm in learning random satisfiability logic for discrete hopfield neural network

This study introduced a novel ant colony optimization algorithm that implements the population selection strategy of the Estimation of Distribution Algorithm and a new pheromone updating formula. It aimed to optimize the performance of G-type random high-order satisfiability logic structures embedde...

全面介紹

Saved in:
書目詳細資料
Main Authors: Gao, Yuan, Mohd Kasihmuddin, Mohd Shareduwan, Chen, Ju, Zheng, Chengfeng, Romli, Nurul Atiqah, Mansor, Mohd. Asyraf, Zamri, Nur Ezlin
格式: Article
語言:English
出版: Elsevier 2024
在線閱讀:http://psasir.upm.edu.my/id/eprint/114433/1/114433.pdf
http://psasir.upm.edu.my/id/eprint/114433/
https://linkinghub.elsevier.com/retrieve/pii/S1568494624009669
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Universiti Putra Malaysia
語言: English