Comparison of optimum finite element method vs. differential quadrature method in two-dimensional heat transfer problem

Among various numerical solution techniques, finite element method (FEM) and differential quadrature method (DQM) are two important of those. Usually elements are sub-divided uniformly in FEM (conventional FEM, CFEM) to obtain temperature distribution behavior in a fin or plate. Hence, extra computa...

Full description

Saved in:
Bibliographic Details
Main Authors: Fakir, Md. Moslemuddin, Basri, Shahnor, Varatharajoo, Renuganth, Jaafar, Abdul Aziz, Mohd Rafie, Azmin Shakrine, Abang Abdul Majid, Dayang Laila
Format: Article
Language:English
Published: Praise Worthy Prize 2008
Online Access:http://psasir.upm.edu.my/id/eprint/13694/1/Comparison%20of%20optimum%20finite%20element%20method%20vs.pdf
http://psasir.upm.edu.my/id/eprint/13694/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
Language: English
Description
Summary:Among various numerical solution techniques, finite element method (FEM) and differential quadrature method (DQM) are two important of those. Usually elements are sub-divided uniformly in FEM (conventional FEM, CFEM) to obtain temperature distribution behavior in a fin or plate. Hence, extra computational complexity is needed to obtain a fair solution with required accuracy. In this paper, non-uniform sub-elements are considered for FEM (optimum FEM, OFEM) solution to reduce the computational complexity. Then this OFEM is applied for the solution of two-dimensional heat transfer problem in a rectangular thin fin. The obtained results are compared with CFEM and optimum DQM (ODQM, with non-uniform mesh generation). It is found that the OFEM exhibit more accurate results than CFEM and ODQM showing its potentiality.