Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone.
Biomaterial, an essential component of tissue engineering, serves as a scaffold for cell attachment, proliferation, and differentiation; provides the three dimensional (3D) structure and, in some applications, the mechanical strength required for the engineered tissue. Both synthetic and naturally o...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Wiley
2008
|
Online Access: | http://psasir.upm.edu.my/id/eprint/14069/1/Differential%20osteogenic%20activity%20of%20osteoprogenitor%20cells%20on%20HA%20and%20TCP.pdf http://psasir.upm.edu.my/id/eprint/14069/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Putra Malaysia |
Language: | English English |
id |
my.upm.eprints.14069 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.140692015-12-22T02:31:09Z http://psasir.upm.edu.my/id/eprint/14069/ Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. Ng, Min Hwei Tan, Kok Keong Phang, Mun Yee O., Aziyati Tan, G. H. Mohamed Rose, Isa Saim, Aminuddin Malik, Naseem Othman, Fauziah Idrus, Ruszymah Biomaterial, an essential component of tissue engineering, serves as a scaffold for cell attachment, proliferation, and differentiation; provides the three dimensional (3D) structure and, in some applications, the mechanical strength required for the engineered tissue. Both synthetic and naturally occurring calcium phosphate based biomaterial have been used as bone fillers or bone extenders in orthopedic and reconstructive surgeries. This study aims to evaluate two popular calcium phosphate based biomaterial i.e., hydroxyapatite (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) granules as scaffold materials in bone tissue engineering. In our strategy for constructing tissue engineered bone, human osteoprogenitor cells derived from periosteum were incorporated with human plasma-derived fibrin and seeded onto HA or TCP/HA forming 3D tissue constructs and further maintained in osteogenic medium for 4 weeks to induce osteogenic differentiation. Constructs were subsequently implanted intramuscularly in nude mice for 8 weeks after which mice were euthanized and constructs harvested for evaluation. The differential cell response to the biomaterial (HA or TCP/HA) adopted as scaffold was illustrated by the histology of undecalcified constructs and evaluation using SEM and TEM. Both HA and TCP/HA constructs showed evidence of cell proliferation, calcium deposition, and collagen bundle formation albeit lesser in the former. Our findings demonstrated that TCP/HA is superior between the two in early bone formation and hence is the scaffold material of choice in bone tissue engineering. Wiley 2008-05 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/14069/1/Differential%20osteogenic%20activity%20of%20osteoprogenitor%20cells%20on%20HA%20and%20TCP.pdf Ng, Min Hwei and Tan, Kok Keong and Phang, Mun Yee and O., Aziyati and Tan, G. H. and Mohamed Rose, Isa and Saim, Aminuddin and Malik, Naseem and Othman, Fauziah and Idrus, Ruszymah (2008) Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. Journal of Biomedical Materials Research: Part A, 85A (2). pp. 301-312. ISSN 1549-3296; ESSN: 1552-4965 10.1002/jbm.a.31324 English |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English English |
description |
Biomaterial, an essential component of tissue engineering, serves as a scaffold for cell attachment, proliferation, and differentiation; provides the three dimensional (3D) structure and, in some applications, the mechanical strength required for the engineered tissue. Both synthetic and naturally occurring calcium phosphate based biomaterial have been used as bone fillers or bone extenders in orthopedic and reconstructive surgeries. This study aims to evaluate two popular calcium phosphate based biomaterial i.e., hydroxyapatite (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) granules as scaffold materials in bone tissue engineering. In our strategy for constructing tissue engineered bone, human osteoprogenitor cells derived from periosteum were incorporated with human plasma-derived fibrin and seeded onto HA or TCP/HA forming 3D tissue constructs and further maintained in osteogenic medium for 4 weeks to induce osteogenic differentiation. Constructs were subsequently implanted intramuscularly in nude mice for 8 weeks after which mice were euthanized and constructs harvested for evaluation. The differential cell response to the biomaterial (HA or TCP/HA) adopted as scaffold was illustrated by the histology of undecalcified constructs and evaluation using SEM and TEM. Both HA and TCP/HA constructs showed evidence of cell proliferation, calcium deposition, and collagen bundle formation albeit lesser in the former. Our findings demonstrated that TCP/HA is superior between the two in early bone formation and hence is the scaffold material of choice in bone tissue engineering. |
format |
Article |
author |
Ng, Min Hwei Tan, Kok Keong Phang, Mun Yee O., Aziyati Tan, G. H. Mohamed Rose, Isa Saim, Aminuddin Malik, Naseem Othman, Fauziah Idrus, Ruszymah |
spellingShingle |
Ng, Min Hwei Tan, Kok Keong Phang, Mun Yee O., Aziyati Tan, G. H. Mohamed Rose, Isa Saim, Aminuddin Malik, Naseem Othman, Fauziah Idrus, Ruszymah Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. |
author_facet |
Ng, Min Hwei Tan, Kok Keong Phang, Mun Yee O., Aziyati Tan, G. H. Mohamed Rose, Isa Saim, Aminuddin Malik, Naseem Othman, Fauziah Idrus, Ruszymah |
author_sort |
Ng, Min Hwei |
title |
Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. |
title_short |
Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. |
title_full |
Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. |
title_fullStr |
Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. |
title_full_unstemmed |
Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. |
title_sort |
differential osteogenic activity of osteoprogenitor cells on ha and tcp/ha scaffold of tissue engineered bone. |
publisher |
Wiley |
publishDate |
2008 |
url |
http://psasir.upm.edu.my/id/eprint/14069/1/Differential%20osteogenic%20activity%20of%20osteoprogenitor%20cells%20on%20HA%20and%20TCP.pdf http://psasir.upm.edu.my/id/eprint/14069/ |
_version_ |
1643825521295884288 |