Convergence of the continuous wavelet transforms on the entire Lebesgue set of Lp functions

Under the minimal conditions on wavelets convergence almost- everywhere of wavelet transform of Lp functions is well known. But this result is not completely satisfying for the reason, that we have no information about the exceptional set (of measure zero), where there is no convengence. In this pap...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ashurov, Ravshan
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2010
الوصول للمادة أونلاين:http://psasir.upm.edu.my/id/eprint/17985/1/ID%2017985.pdf
http://psasir.upm.edu.my/id/eprint/17985/
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universiti Putra Malaysia
اللغة: English
الوصف
الملخص:Under the minimal conditions on wavelets convergence almost- everywhere of wavelet transform of Lp functions is well known. But this result is not completely satisfying for the reason, that we have no information about the exceptional set (of measure zero), where there is no convengence. In this paper under the slightly stronger conditions on wavelets we prove convergence of wavelet transforms everywhere on the entire Lebesgue set of Lp functions. On the other hand, practically all the wavelets, like Haar and 'French hat' wavelets,used frequently in applications,satisfy our conditions.