Adaptive Similarity Component Analysis in Nonparametric Dynamic Environment

Pattern classification and recognition in low-rank distance metric dealing with nonparametric changes is an underlying problem in dynamic environment applications. Data arrives from operational field in a stream model and similarity-based classification algorithms must identify them with acceptable...

Full description

Saved in:
Bibliographic Details
Main Author: Sojodishijani, Omid
Format: Thesis
Language:English
Published: 2011
Online Access:http://psasir.upm.edu.my/id/eprint/19970/1/ITMA_2011_9_ir.pdf
http://psasir.upm.edu.my/id/eprint/19970/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
Language: English
id my.upm.eprints.19970
record_format eprints
spelling my.upm.eprints.199702014-01-13T09:34:38Z http://psasir.upm.edu.my/id/eprint/19970/ Adaptive Similarity Component Analysis in Nonparametric Dynamic Environment Sojodishijani, Omid Pattern classification and recognition in low-rank distance metric dealing with nonparametric changes is an underlying problem in dynamic environment applications. Data arrives from operational field in a stream model and similarity-based classification algorithms must identify them with acceptable performance. Although, there are adaptive forms of independent feature extraction methods such as principle component analysis (PCA), linear discriminant analysis (LDA) and independent component analysis (ICA) to transform the training patterns to low dimensional space and/or improve the classifiers accuracy, they suffer from nonparametric changes in data over time. This study is devoted to design a data-driven linear transformation to increase the performance of similarity-based classifiers in the presence of nonparametric changes of data over time. For this purpose, a nonparametric multiclass component analysis technique in nonstationary environments is introduced. This generative model enables adaptive similarity-based classifiers to classify time-labeled inquiry pattern with superior accuracy in a low dimensional feature space. In this thesis, an optimal transformation matrix is used to transform the time-labeled instances from original space to a new feature space in order to maximize the probability of selecting the correct class label for incoming instance by similarity-based classifiers. For this purpose, the most probable location of incoming instance for each class is estimated. Then, an optimal transformation matrix is computed by maximizing the information gain at the estimated points. By restricting the transformation matrix to a nonsquare matrix, the dimensions of feature space will be linearly reduced. Experimental results on real and synthesized datasets with real and artificial changes demonstrate the performance of the proposed method in terms of accuracy and dimension reduction in dynamic environments. In the case of real datasets, the proposed method yields 12.16% average misclassification error while the average misclassification error for five different methods GAM, TSY, NWKNN, DWM and FISH is 19.54%. Also, the results of experiments on synthesized datasets show that the proposed method yields 32.83% average misclassification error while average misclassification error of five different methods is 38.78%. From a dimensionality reduction evaluation aspect, the average misclassification error of the proposed method in low-rank feature space is 9.6% and same error rate for three other well-known feature extraction methods is 21.21%. The novelty of the proposed approach resides in the possibility to reduce the dimensions of feature space and simultaneously increase the accuracy of similarity-based classification method in an adaptive fashion in the nonparametric dynamic environment. Consequently, the proposed adaptive feature extraction technique and neighborhood-based classifier family are tightly integrated in an adaptive K-nearest neighbor classifier. 2011-10 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/19970/1/ITMA_2011_9_ir.pdf Sojodishijani, Omid (2011) Adaptive Similarity Component Analysis in Nonparametric Dynamic Environment. PhD thesis, Universiti Putra Malaysia.
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description Pattern classification and recognition in low-rank distance metric dealing with nonparametric changes is an underlying problem in dynamic environment applications. Data arrives from operational field in a stream model and similarity-based classification algorithms must identify them with acceptable performance. Although, there are adaptive forms of independent feature extraction methods such as principle component analysis (PCA), linear discriminant analysis (LDA) and independent component analysis (ICA) to transform the training patterns to low dimensional space and/or improve the classifiers accuracy, they suffer from nonparametric changes in data over time. This study is devoted to design a data-driven linear transformation to increase the performance of similarity-based classifiers in the presence of nonparametric changes of data over time. For this purpose, a nonparametric multiclass component analysis technique in nonstationary environments is introduced. This generative model enables adaptive similarity-based classifiers to classify time-labeled inquiry pattern with superior accuracy in a low dimensional feature space. In this thesis, an optimal transformation matrix is used to transform the time-labeled instances from original space to a new feature space in order to maximize the probability of selecting the correct class label for incoming instance by similarity-based classifiers. For this purpose, the most probable location of incoming instance for each class is estimated. Then, an optimal transformation matrix is computed by maximizing the information gain at the estimated points. By restricting the transformation matrix to a nonsquare matrix, the dimensions of feature space will be linearly reduced. Experimental results on real and synthesized datasets with real and artificial changes demonstrate the performance of the proposed method in terms of accuracy and dimension reduction in dynamic environments. In the case of real datasets, the proposed method yields 12.16% average misclassification error while the average misclassification error for five different methods GAM, TSY, NWKNN, DWM and FISH is 19.54%. Also, the results of experiments on synthesized datasets show that the proposed method yields 32.83% average misclassification error while average misclassification error of five different methods is 38.78%. From a dimensionality reduction evaluation aspect, the average misclassification error of the proposed method in low-rank feature space is 9.6% and same error rate for three other well-known feature extraction methods is 21.21%. The novelty of the proposed approach resides in the possibility to reduce the dimensions of feature space and simultaneously increase the accuracy of similarity-based classification method in an adaptive fashion in the nonparametric dynamic environment. Consequently, the proposed adaptive feature extraction technique and neighborhood-based classifier family are tightly integrated in an adaptive K-nearest neighbor classifier.
format Thesis
author Sojodishijani, Omid
spellingShingle Sojodishijani, Omid
Adaptive Similarity Component Analysis in Nonparametric Dynamic Environment
author_facet Sojodishijani, Omid
author_sort Sojodishijani, Omid
title Adaptive Similarity Component Analysis in Nonparametric Dynamic Environment
title_short Adaptive Similarity Component Analysis in Nonparametric Dynamic Environment
title_full Adaptive Similarity Component Analysis in Nonparametric Dynamic Environment
title_fullStr Adaptive Similarity Component Analysis in Nonparametric Dynamic Environment
title_full_unstemmed Adaptive Similarity Component Analysis in Nonparametric Dynamic Environment
title_sort adaptive similarity component analysis in nonparametric dynamic environment
publishDate 2011
url http://psasir.upm.edu.my/id/eprint/19970/1/ITMA_2011_9_ir.pdf
http://psasir.upm.edu.my/id/eprint/19970/
_version_ 1643827192751194112