Theory And Simulation Of The Incipient Gas-Solid Fluidized Bed

The incipient instability in gas fluidized bed has not been fully understood despite extensive studies were conducted. A new transient theory was proposed by adopting the principles advanced by Tan and Thorpe (1992 and 1996) and Tan et al. (2003), and this was verified by computational fluid dyna...

Full description

Saved in:
Bibliographic Details
Main Author: Tan, Yee Wan
Format: Thesis
Language:English
Published: 2004
Online Access:http://psasir.upm.edu.my/id/eprint/232/1/549518_FK_2004_104.pdf
http://psasir.upm.edu.my/id/eprint/232/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
Language: English
id my.upm.eprints.232
record_format eprints
spelling my.upm.eprints.2322015-08-06T03:09:05Z http://psasir.upm.edu.my/id/eprint/232/ Theory And Simulation Of The Incipient Gas-Solid Fluidized Bed Tan, Yee Wan The incipient instability in gas fluidized bed has not been fully understood despite extensive studies were conducted. A new transient theory was proposed by adopting the principles advanced by Tan and Thorpe (1992 and 1996) and Tan et al. (2003), and this was verified by computational fluid dynamic (CFD) simulations. The theory of instability in porous media has two functions. One involved the molecular diffusion of a microscopic mass flux in the gas phase with potential adverse density gradient, buoyancy convection in gas will occur, but the solid particles will stationary. If the solid particles were subjected to very high mass fluxes which is characterized by its high gas velocity such as those exceeding the minimum velocity of fluidization, then the buoyancy force of the particles will be overcome and the solids will be moved and fluidized almost instantaneously. 2D time dependent simulations were conducted using a CFD package - FLUENT for gas diffusion in porous media to observe buoyancy convection and also the incipient instability in fluidized bed, using various gas pairs, mass fluxes and particles sizes. As a prelude to these studies, transient convection induced by gas diffusion in another gas was conducted, so as to understand fully the instability induced by mass diffusion. The simulated critical Rayleigh number were found to be 531 and 707 for top-down and bottom-up gas-gas diffusion respectively, which were very close to the theoretical value of 669 and 817. For transient buoyancy instability induced by gas diffusion in porous media, the average simulated critical Rayleigh number was found to be 26.7, which agreed very well with the theoretical value of 27.1. The simulated onset time of buoyancy convection were also found to be in good agreement with the predicted value. Very often gas velocity is used in designing a fluidized bed, despite that the instability of the bed is actually induced by the mass fluxes of the gas which provide the required velocity. Incipient instability in fluidized bed is caused by fluid velocity higher than the minimum fluidization velocity, Umf. The simulations of incipient instability showed that the bed behavior was dependent on the fluid velocity and the particle size and porosity. The incipient instability was preceded by the gas or pressure saturation of the interstices, induced a high momentum force due to the high mass flux which mobilized and lifted the particles once the critical Rayleigh number was exceeded. The simulated critical Rayleigh number was found to be 30.4, which agreed with the theoretical value of 27.1 for buoyancy instability in porous media. The simulated critical times of the incipient instability in fluidized bed were in good agreement with the predicted values and reported experiments in literature. The bed pressure drop, expansion ratio and void fraction after the fluidization were successfully simulated and were found to be in good agreement with experiments and theoretical values. 2004-03 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/232/1/549518_FK_2004_104.pdf Tan, Yee Wan (2004) Theory And Simulation Of The Incipient Gas-Solid Fluidized Bed. Masters thesis, Universiti Putra Malaysia.
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description The incipient instability in gas fluidized bed has not been fully understood despite extensive studies were conducted. A new transient theory was proposed by adopting the principles advanced by Tan and Thorpe (1992 and 1996) and Tan et al. (2003), and this was verified by computational fluid dynamic (CFD) simulations. The theory of instability in porous media has two functions. One involved the molecular diffusion of a microscopic mass flux in the gas phase with potential adverse density gradient, buoyancy convection in gas will occur, but the solid particles will stationary. If the solid particles were subjected to very high mass fluxes which is characterized by its high gas velocity such as those exceeding the minimum velocity of fluidization, then the buoyancy force of the particles will be overcome and the solids will be moved and fluidized almost instantaneously. 2D time dependent simulations were conducted using a CFD package - FLUENT for gas diffusion in porous media to observe buoyancy convection and also the incipient instability in fluidized bed, using various gas pairs, mass fluxes and particles sizes. As a prelude to these studies, transient convection induced by gas diffusion in another gas was conducted, so as to understand fully the instability induced by mass diffusion. The simulated critical Rayleigh number were found to be 531 and 707 for top-down and bottom-up gas-gas diffusion respectively, which were very close to the theoretical value of 669 and 817. For transient buoyancy instability induced by gas diffusion in porous media, the average simulated critical Rayleigh number was found to be 26.7, which agreed very well with the theoretical value of 27.1. The simulated onset time of buoyancy convection were also found to be in good agreement with the predicted value. Very often gas velocity is used in designing a fluidized bed, despite that the instability of the bed is actually induced by the mass fluxes of the gas which provide the required velocity. Incipient instability in fluidized bed is caused by fluid velocity higher than the minimum fluidization velocity, Umf. The simulations of incipient instability showed that the bed behavior was dependent on the fluid velocity and the particle size and porosity. The incipient instability was preceded by the gas or pressure saturation of the interstices, induced a high momentum force due to the high mass flux which mobilized and lifted the particles once the critical Rayleigh number was exceeded. The simulated critical Rayleigh number was found to be 30.4, which agreed with the theoretical value of 27.1 for buoyancy instability in porous media. The simulated critical times of the incipient instability in fluidized bed were in good agreement with the predicted values and reported experiments in literature. The bed pressure drop, expansion ratio and void fraction after the fluidization were successfully simulated and were found to be in good agreement with experiments and theoretical values.
format Thesis
author Tan, Yee Wan
spellingShingle Tan, Yee Wan
Theory And Simulation Of The Incipient Gas-Solid Fluidized Bed
author_facet Tan, Yee Wan
author_sort Tan, Yee Wan
title Theory And Simulation Of The Incipient Gas-Solid Fluidized Bed
title_short Theory And Simulation Of The Incipient Gas-Solid Fluidized Bed
title_full Theory And Simulation Of The Incipient Gas-Solid Fluidized Bed
title_fullStr Theory And Simulation Of The Incipient Gas-Solid Fluidized Bed
title_full_unstemmed Theory And Simulation Of The Incipient Gas-Solid Fluidized Bed
title_sort theory and simulation of the incipient gas-solid fluidized bed
publishDate 2004
url http://psasir.upm.edu.my/id/eprint/232/1/549518_FK_2004_104.pdf
http://psasir.upm.edu.my/id/eprint/232/
_version_ 1643821769632514048