Mapping heterogeneous urban landscapes from the fusion of digital surface model and unmanned aerial vehicle-based images using adaptive multiscale image segmentation and classification

Considering the high-level details in an ultrahigh-spatial-resolution (UHSR) unmanned aerial vehicle (UAV) dataset, detailed mapping of heterogeneous urban landscapes is extremely challenging because of the spectral similarity between classes. In this study, adaptive hierarchical image segmentation...

Full description

Saved in:
Bibliographic Details
Main Authors: Gibril, Mohamed Barakat A., Kalantar, Bahareh, Al-Ruzouq, Rami, Ueda, Naonori, Saeidi, Vahideh, Shanableh, Abdallah, Mansor, Shattri, Mohd Shafri, Helmi Zulhaidi
Format: Article
Language:English
Published: MDPI 2020
Online Access:http://psasir.upm.edu.my/id/eprint/38105/1/38105.pdf
http://psasir.upm.edu.my/id/eprint/38105/
https://www.mdpi.com/2072-4292/12/7/1081
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
Language: English
Description
Summary:Considering the high-level details in an ultrahigh-spatial-resolution (UHSR) unmanned aerial vehicle (UAV) dataset, detailed mapping of heterogeneous urban landscapes is extremely challenging because of the spectral similarity between classes. In this study, adaptive hierarchical image segmentation optimization, multilevel feature selection, and multiscale (MS) supervised machine learning (ML) models were integrated to accurately generate detailed maps for heterogeneous urban areas from the fusion of the UHSR orthomosaic and digital surface model (DSM). The integrated approach commenced through a preliminary MS image segmentation parameter selection, followed by the application of three supervised ML models, namely, random forest (RF), support vector machine (SVM), and decision tree (DT). These models were implemented at the optimal MS levels to identify preliminary information, such as the optimal segmentation level(s) and relevant features, for extracting 12 land use/land cover (LULC) urban classes from the fused datasets. Using the information obtained from the first phase of the analysis, detailed MS classification was iteratively conducted to improve the classification accuracy and derive the final urban LULC maps. Two UAV-based datasets were used to develop and assess the effectiveness of the proposed framework. The hierarchical classification of the pilot study area showed that the RF was superior with an overall accuracy (OA) of 94.40% and a kappa coefficient (K) of 0.938, followed by SVM (OA = 92.50% and K = 0.917) and DT (OA = 91.60% and K = 0.908). The classification results of the second dataset revealed that SVM was superior with an OA of 94.45% and K of 0.938, followed by RF (OA = 92.46% and K = 0.916) and DT (OA = 90.46% and K = 0.893). The proposed framework exhibited an excellent potential for the detailed mapping of heterogeneous urban landscapes from the fusion of UHSR orthophoto and DSM images using various ML models.