Exponential sums for eighth degree polynomial
Let p > 7 be a prime, the exponential sums of any polynomial f(x, y) is given by S(f; p α ) = ∑x,y mod p e 2πif(x,y)/ pα, where the sum is taken over a complete set of residue modulo p. Firstly, Newton Polyhedron technique was used to determine the estimation for the p-adic sizes of common zeros...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute for Mathematical Research, Universiti Putra Malaysia
2020
|
Online Access: | http://psasir.upm.edu.my/id/eprint/38340/1/7.%20Siti%20Hasana%20Sapar.pdf http://psasir.upm.edu.my/id/eprint/38340/ http://einspem.upm.edu.my/journal/fullpaper/vol14no1jan/7.%20Siti%20Hasana%20Sapar.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Putra Malaysia |
Language: | English |
id |
my.upm.eprints.38340 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.383402020-05-04T16:19:15Z http://psasir.upm.edu.my/id/eprint/38340/ Exponential sums for eighth degree polynomial Low, Chee Wai Sapar, Siti Hasana Mohamat Johari, Mohamat Aidil Let p > 7 be a prime, the exponential sums of any polynomial f(x, y) is given by S(f; p α ) = ∑x,y mod p e 2πif(x,y)/ pα, where the sum is taken over a complete set of residue modulo p. Firstly, Newton Polyhedron technique was used to determine the estimation for the p-adic sizes of common zeros of the partial derivative polynomials fx, fy which derive from f(x, y). We continue by estimating the cardinality N(g, h; p α ) as well as the exponential sums of polynomial f(x, y). Throught out this paper, we consider the polynomial of eighth degree with two variables in the form f(x, y) = ax8 +bx7 y+cx6 y 2 +dx5 y 3 +ex4 y 4 +kx3 y 5 +mx2 y 6 + nxy7 + uy8 + rx + sy + t. Institute for Mathematical Research, Universiti Putra Malaysia 2020 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/38340/1/7.%20Siti%20Hasana%20Sapar.pdf Low, Chee Wai and Sapar, Siti Hasana and Mohamat Johari, Mohamat Aidil (2020) Exponential sums for eighth degree polynomial. Malaysian Journal of Mathematical Sciences, 14 (1). pp. 115-138. ISSN 1823-8343; ESSN: 2289-750X http://einspem.upm.edu.my/journal/fullpaper/vol14no1jan/7.%20Siti%20Hasana%20Sapar.pdf |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
Let p > 7 be a prime, the exponential sums of any polynomial f(x, y) is given by S(f; p α ) = ∑x,y mod p e 2πif(x,y)/ pα, where the sum is taken over a complete set of residue modulo p. Firstly, Newton Polyhedron technique was used to determine the estimation for the p-adic sizes of common zeros of the partial derivative polynomials fx, fy which derive from f(x, y). We continue by estimating the cardinality N(g, h; p α ) as well as the exponential sums of polynomial f(x, y). Throught out this paper, we consider the polynomial of eighth degree with two variables in the form f(x, y) = ax8 +bx7 y+cx6 y 2 +dx5 y 3 +ex4 y 4 +kx3 y 5 +mx2 y 6 + nxy7 + uy8 + rx + sy + t. |
format |
Article |
author |
Low, Chee Wai Sapar, Siti Hasana Mohamat Johari, Mohamat Aidil |
spellingShingle |
Low, Chee Wai Sapar, Siti Hasana Mohamat Johari, Mohamat Aidil Exponential sums for eighth degree polynomial |
author_facet |
Low, Chee Wai Sapar, Siti Hasana Mohamat Johari, Mohamat Aidil |
author_sort |
Low, Chee Wai |
title |
Exponential sums for eighth degree polynomial |
title_short |
Exponential sums for eighth degree polynomial |
title_full |
Exponential sums for eighth degree polynomial |
title_fullStr |
Exponential sums for eighth degree polynomial |
title_full_unstemmed |
Exponential sums for eighth degree polynomial |
title_sort |
exponential sums for eighth degree polynomial |
publisher |
Institute for Mathematical Research, Universiti Putra Malaysia |
publishDate |
2020 |
url |
http://psasir.upm.edu.my/id/eprint/38340/1/7.%20Siti%20Hasana%20Sapar.pdf http://psasir.upm.edu.my/id/eprint/38340/ http://einspem.upm.edu.my/journal/fullpaper/vol14no1jan/7.%20Siti%20Hasana%20Sapar.pdf |
_version_ |
1665895976871657472 |