On the convergence of the point repeated symmetric single-step procedure for simultaneous estimation of polynomial zeros
The point symmetric single-step procedure established by Monsi (2012) has R-order of convergence at least 3. This procedure is modified by repeating the steps in the procedure r times without involving function evaluations. This modified procedure is called the point repeated symmetric single-step P...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Institute for Mathematical Research, Universiti Putra Malaysia
2015
|
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/38962/1/38962.pdf http://psasir.upm.edu.my/id/eprint/38962/ http://einspem.upm.edu.my/journal/fullpaper/vol9no2/8.%20mansor%20monsi%20updated.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Universiti Putra Malaysia |
اللغة: | English |
الملخص: | The point symmetric single-step procedure established by Monsi (2012) has R-order of convergence at least 3. This procedure is modified by repeating the steps in the procedure r times without involving function evaluations. This modified procedure is called the point repeated symmetric single-step PRSS1. The R-order of convergence of PRSS1 is at least (2r + 1)(r ≥ 1) Computational experiences in the implementation of the interval version of PRSS1 (see Monsi and Wolfe, 1988) showed that the repeated symmetric single-step procedure is more efficient than the total step (Kerner, 1966) and the single-step (Alefeld and Herzberger, 1974) methods. |
---|