Genetic analysis of rust resistance genes in global wheat cultivars: an overview
Rust is the most devastating fungal disease in wheat. Three rust diseases, namely, leaf or brown rust caused by Puccinia triticina Eriks, stem or black rust caused by Puccinia graminis f. sp. tritici West, and stripe or yellow rust caused by Puccinia striiformis f. Tritici Eriks, are the most econom...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis
2017
|
Online Access: | http://psasir.upm.edu.my/id/eprint/52420/1/Genetic%20analysis%20of%20rust%20resistance%20genes%20in%20global%20wheat%20cultivars%20an%20overview.pdf http://psasir.upm.edu.my/id/eprint/52420/ http://www.tandfonline.com/doi/abs/10.1080/13102818.2017.1304180 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Putra Malaysia |
Language: | English |
id |
my.upm.eprints.52420 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.524202017-06-06T08:43:38Z http://psasir.upm.edu.my/id/eprint/52420/ Genetic analysis of rust resistance genes in global wheat cultivars: an overview Uzzaman, Md. Aktar Khatun, Mst. Tuhina Musa, Mohamed Hanafi Sahebi, Mahbod Rust is the most devastating fungal disease in wheat. Three rust diseases, namely, leaf or brown rust caused by Puccinia triticina Eriks, stem or black rust caused by Puccinia graminis f. sp. tritici West, and stripe or yellow rust caused by Puccinia striiformis f. Tritici Eriks, are the most economically significant and common diseases among global wheat cultivars. Growing cultivars resistant to rust is the most sustainable, cost-effective and environmentally friendly approach for controlling rust diseases. To date, more than 187 rust resistance genes (80 leaf rust, 58 stem rust and 49 stripe rust) have been derived from diverse wheat or durum wheat cultivars and the related wild species using different molecular methods. This review provides a detailed discussion of the different aspects of rust resistance genes, their primitive sources, their distribution in global wheat cultivars and the importance of durable resistant varieties for controlling rust diseases. This information will serve as a foundation for plant breeders and geneticists to develop durable rust-resistant wheat varieties through marker-assisted breeding or gene pyramiding. Taylor & Francis 2017 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/52420/1/Genetic%20analysis%20of%20rust%20resistance%20genes%20in%20global%20wheat%20cultivars%20an%20overview.pdf Uzzaman, Md. Aktar and Khatun, Mst. Tuhina and Musa, Mohamed Hanafi and Sahebi, Mahbod (2017) Genetic analysis of rust resistance genes in global wheat cultivars: an overview. Biotechnology & Biotechnological Equipment, 31 (3). pp. 431-445. ISSN 1310-2818; ESSN: 1314-3530 http://www.tandfonline.com/doi/abs/10.1080/13102818.2017.1304180 10.1080/13102818.2017.1304180 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
Rust is the most devastating fungal disease in wheat. Three rust diseases, namely, leaf or brown rust caused by Puccinia triticina Eriks, stem or black rust caused by Puccinia graminis f. sp. tritici West, and stripe or yellow rust caused by Puccinia striiformis f. Tritici Eriks, are the most economically significant and common diseases among global wheat cultivars. Growing cultivars resistant to rust is the most sustainable, cost-effective and environmentally friendly approach for controlling rust diseases. To date, more than 187 rust resistance genes (80 leaf rust, 58 stem rust and 49 stripe rust) have been derived from diverse wheat or durum wheat cultivars and the related wild species using different molecular methods. This review provides a detailed discussion of the different aspects of rust resistance genes, their primitive sources, their distribution in global wheat cultivars and the importance of durable resistant varieties for controlling rust diseases. This information will serve as a foundation for plant breeders and geneticists to develop durable rust-resistant wheat varieties through marker-assisted breeding or gene pyramiding. |
format |
Article |
author |
Uzzaman, Md. Aktar Khatun, Mst. Tuhina Musa, Mohamed Hanafi Sahebi, Mahbod |
spellingShingle |
Uzzaman, Md. Aktar Khatun, Mst. Tuhina Musa, Mohamed Hanafi Sahebi, Mahbod Genetic analysis of rust resistance genes in global wheat cultivars: an overview |
author_facet |
Uzzaman, Md. Aktar Khatun, Mst. Tuhina Musa, Mohamed Hanafi Sahebi, Mahbod |
author_sort |
Uzzaman, Md. Aktar |
title |
Genetic analysis of rust resistance genes in global wheat cultivars: an overview |
title_short |
Genetic analysis of rust resistance genes in global wheat cultivars: an overview |
title_full |
Genetic analysis of rust resistance genes in global wheat cultivars: an overview |
title_fullStr |
Genetic analysis of rust resistance genes in global wheat cultivars: an overview |
title_full_unstemmed |
Genetic analysis of rust resistance genes in global wheat cultivars: an overview |
title_sort |
genetic analysis of rust resistance genes in global wheat cultivars: an overview |
publisher |
Taylor & Francis |
publishDate |
2017 |
url |
http://psasir.upm.edu.my/id/eprint/52420/1/Genetic%20analysis%20of%20rust%20resistance%20genes%20in%20global%20wheat%20cultivars%20an%20overview.pdf http://psasir.upm.edu.my/id/eprint/52420/ http://www.tandfonline.com/doi/abs/10.1080/13102818.2017.1304180 |
_version_ |
1643835244130861056 |