Semi chaotic operators on Banach spaces
We introduce and study a weaker form of Devaney chaotic operators on Banach spaces, which we call semi chaotic operators. We show that semi chaotic operators exist on every finite dimensional Hilbert spaces. We give a semi chaotic criterion “a sufficient condition for semi chaotic operators”, we use...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2016
|
Online Access: | http://psasir.upm.edu.my/id/eprint/53793/1/Semi%20chaotic%20operators%20on%20Banach%20spaces.pdf http://psasir.upm.edu.my/id/eprint/53793/ https://www.sciencedirect.com/science/article/pii/S0723086916300329 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Putra Malaysia |
Language: | English |
id |
my.upm.eprints.53793 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.537932018-02-01T10:08:43Z http://psasir.upm.edu.my/id/eprint/53793/ Semi chaotic operators on Banach spaces Bamerni, Nareen Kilicman, Adem We introduce and study a weaker form of Devaney chaotic operators on Banach spaces, which we call semi chaotic operators. We show that semi chaotic operators exist on every finite dimensional Hilbert spaces. We give a semi chaotic criterion “a sufficient condition for semi chaotic operators”, we use this criterion to characterize all semi chaotic weighted shifts on ℓp(N) and ℓp (Z) in terms of their weight sequences. Elsevier 2016 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/53793/1/Semi%20chaotic%20operators%20on%20Banach%20spaces.pdf Bamerni, Nareen and Kilicman, Adem (2016) Semi chaotic operators on Banach spaces. Expositiones Mathematicae, 34 (4). pp. 467-474. ISSN 0723-0869; ESSN: 1878-0792 https://www.sciencedirect.com/science/article/pii/S0723086916300329 10.1016/j.exmath.2016.06.002 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
We introduce and study a weaker form of Devaney chaotic operators on Banach spaces, which we call semi chaotic operators. We show that semi chaotic operators exist on every finite dimensional Hilbert spaces. We give a semi chaotic criterion “a sufficient condition for semi chaotic operators”, we use this criterion to characterize all semi chaotic weighted shifts on ℓp(N) and ℓp (Z) in terms of their weight sequences. |
format |
Article |
author |
Bamerni, Nareen Kilicman, Adem |
spellingShingle |
Bamerni, Nareen Kilicman, Adem Semi chaotic operators on Banach spaces |
author_facet |
Bamerni, Nareen Kilicman, Adem |
author_sort |
Bamerni, Nareen |
title |
Semi chaotic operators on Banach spaces |
title_short |
Semi chaotic operators on Banach spaces |
title_full |
Semi chaotic operators on Banach spaces |
title_fullStr |
Semi chaotic operators on Banach spaces |
title_full_unstemmed |
Semi chaotic operators on Banach spaces |
title_sort |
semi chaotic operators on banach spaces |
publisher |
Elsevier |
publishDate |
2016 |
url |
http://psasir.upm.edu.my/id/eprint/53793/1/Semi%20chaotic%20operators%20on%20Banach%20spaces.pdf http://psasir.upm.edu.my/id/eprint/53793/ https://www.sciencedirect.com/science/article/pii/S0723086916300329 |
_version_ |
1643835488013910016 |