Centroids and derivations of low-dimensional Leibniz algebra

In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebr...

Full description

Saved in:
Bibliographic Details
Main Authors: Said Husain, Sharifah Kartini, Rakhimov, Isamiddin Sattarovich, Basri, Witriany
Format: Conference or Workshop Item
Language:English
Published: AIP Publishing 2016
Online Access:http://psasir.upm.edu.my/id/eprint/57395/1/Centroids%20and%20derivations%20of%20low-dimensional%20Leibniz%20algebra.pdf
http://psasir.upm.edu.my/id/eprint/57395/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
Language: English
id my.upm.eprints.57395
record_format eprints
spelling my.upm.eprints.573952017-09-27T07:28:35Z http://psasir.upm.edu.my/id/eprint/57395/ Centroids and derivations of low-dimensional Leibniz algebra Said Husain, Sharifah Kartini Rakhimov, Isamiddin Sattarovich Basri, Witriany In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent. AIP Publishing 2016 Conference or Workshop Item PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/57395/1/Centroids%20and%20derivations%20of%20low-dimensional%20Leibniz%20algebra.pdf Said Husain, Sharifah Kartini and Rakhimov, Isamiddin Sattarovich and Basri, Witriany (2016) Centroids and derivations of low-dimensional Leibniz algebra. In: 24th National Symposium on Mathematical Sciences (SKSM24), 27-29 Sept. 2016, Primula Beach Hotel, Kuala Terengganu, Terengganu. (pp. 1-8). 10.1063/1.4995838
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent.
format Conference or Workshop Item
author Said Husain, Sharifah Kartini
Rakhimov, Isamiddin Sattarovich
Basri, Witriany
spellingShingle Said Husain, Sharifah Kartini
Rakhimov, Isamiddin Sattarovich
Basri, Witriany
Centroids and derivations of low-dimensional Leibniz algebra
author_facet Said Husain, Sharifah Kartini
Rakhimov, Isamiddin Sattarovich
Basri, Witriany
author_sort Said Husain, Sharifah Kartini
title Centroids and derivations of low-dimensional Leibniz algebra
title_short Centroids and derivations of low-dimensional Leibniz algebra
title_full Centroids and derivations of low-dimensional Leibniz algebra
title_fullStr Centroids and derivations of low-dimensional Leibniz algebra
title_full_unstemmed Centroids and derivations of low-dimensional Leibniz algebra
title_sort centroids and derivations of low-dimensional leibniz algebra
publisher AIP Publishing
publishDate 2016
url http://psasir.upm.edu.my/id/eprint/57395/1/Centroids%20and%20derivations%20of%20low-dimensional%20Leibniz%20algebra.pdf
http://psasir.upm.edu.my/id/eprint/57395/
_version_ 1643836474709245952