Deficit irrigation for improving the postharvest quality of lowland tomato fruits

Arable lands are facing serious water scarcity due to climate change and available resources are depleting at an alarming rate which necessitate efficient use of water for agriculture. Deficit irrigation is an on farm strategy which is widely used in many crops to maximise crop productivity in droug...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed, H. N., Tengku Muda Mohamed, Mahmud, Megat Wahab, Puteri Edaroyati
Format: Article
Language:English
Published: Universiti Putra Malaysia Press 2018
Online Access:http://psasir.upm.edu.my/id/eprint/64492/1/16%20JTAS%20Vol%2041%20%282%29%20May%202018_JTAS-1220-2017_pg741-758.pdf
http://psasir.upm.edu.my/id/eprint/64492/
http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JTAS%20Vol.%2041%20(2)%20May.%202018/16%20JTAS%20Vol%2041%20(2)%20May%202018_JTAS-1220-2017_pg741-758.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
Language: English
id my.upm.eprints.64492
record_format eprints
spelling my.upm.eprints.644922018-07-06T09:17:30Z http://psasir.upm.edu.my/id/eprint/64492/ Deficit irrigation for improving the postharvest quality of lowland tomato fruits Mohammed, H. N. Tengku Muda Mohamed, Mahmud Megat Wahab, Puteri Edaroyati Arable lands are facing serious water scarcity due to climate change and available resources are depleting at an alarming rate which necessitate efficient use of water for agriculture. Deficit irrigation is an on farm strategy which is widely used in many crops to maximise crop productivity in drought prone areas. The present study was initiated to assess the effect of deficit irrigation at different growth stages of tomato (lycopersicon esculentum) on yield and fruit quality traits under greenhouse condition. Four regimes of irrigation: (T1) regular watering to field capacity (as control), (T2) irrigation every four days during vegetative stage, (T3) irrigation every four days throughout flowering stage and (T4) irrigation every four days during fruiting stage were evaluated in this study. The experiment was set up in a Randomized Complete Block Design (RCBD) with four replications. Data were collected from three fruit maturity stages: M3 (stage three, matured green), M4 (stage four, pink) and M6 (stage six, red) for yield, fruit weight, fruit number and the fruit quality parameters viz, firmness, soluble solids concentration, titratable acidity, pH, ascorbic acid and lycopene content. The results showed variable effects of deficit irrigation on most parameters studied. Soluble solids concentration were significantly increased under deficit irrigation at the flowering stage and increased from 5.25 brix (control) to 7.7 brix (fruiting) at stage three maturity index. The pH increased from 3.83 (control) to 3.97 (flowering) and 3.94 (fruiting) when fruits were harvested at stage three maturity index. In addition, the highest fruit firmness (3.4 N) was observed when fruit was harvested at stage three maturity under deficit irrigation (vegetative growth stage). Furthermore, lycopene content increased from 62.06 mg/kg in control plants to 67.91 mg/kg in plants which subjected to DI (vegetative) at stage six maturity index. However, water stress had no significant effect on titratable acidity, ascorbic acid and fruit weight. From the observations of this study, it can be concluded that T3 and T4 were adequately appropriate DI practices for MT1 tomato plants that could be recommended to tomato growers as deficit irrigation strategy for higher yield and quality. Universiti Putra Malaysia Press 2018 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/64492/1/16%20JTAS%20Vol%2041%20%282%29%20May%202018_JTAS-1220-2017_pg741-758.pdf Mohammed, H. N. and Tengku Muda Mohamed, Mahmud and Megat Wahab, Puteri Edaroyati (2018) Deficit irrigation for improving the postharvest quality of lowland tomato fruits. Pertanika Journal of Tropical Agricultural Science, 41 (2). pp. 741-758. ISSN 1511-3701; ESSN: 2231-8542 http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JTAS%20Vol.%2041%20(2)%20May.%202018/16%20JTAS%20Vol%2041%20(2)%20May%202018_JTAS-1220-2017_pg741-758.pdf
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description Arable lands are facing serious water scarcity due to climate change and available resources are depleting at an alarming rate which necessitate efficient use of water for agriculture. Deficit irrigation is an on farm strategy which is widely used in many crops to maximise crop productivity in drought prone areas. The present study was initiated to assess the effect of deficit irrigation at different growth stages of tomato (lycopersicon esculentum) on yield and fruit quality traits under greenhouse condition. Four regimes of irrigation: (T1) regular watering to field capacity (as control), (T2) irrigation every four days during vegetative stage, (T3) irrigation every four days throughout flowering stage and (T4) irrigation every four days during fruiting stage were evaluated in this study. The experiment was set up in a Randomized Complete Block Design (RCBD) with four replications. Data were collected from three fruit maturity stages: M3 (stage three, matured green), M4 (stage four, pink) and M6 (stage six, red) for yield, fruit weight, fruit number and the fruit quality parameters viz, firmness, soluble solids concentration, titratable acidity, pH, ascorbic acid and lycopene content. The results showed variable effects of deficit irrigation on most parameters studied. Soluble solids concentration were significantly increased under deficit irrigation at the flowering stage and increased from 5.25 brix (control) to 7.7 brix (fruiting) at stage three maturity index. The pH increased from 3.83 (control) to 3.97 (flowering) and 3.94 (fruiting) when fruits were harvested at stage three maturity index. In addition, the highest fruit firmness (3.4 N) was observed when fruit was harvested at stage three maturity under deficit irrigation (vegetative growth stage). Furthermore, lycopene content increased from 62.06 mg/kg in control plants to 67.91 mg/kg in plants which subjected to DI (vegetative) at stage six maturity index. However, water stress had no significant effect on titratable acidity, ascorbic acid and fruit weight. From the observations of this study, it can be concluded that T3 and T4 were adequately appropriate DI practices for MT1 tomato plants that could be recommended to tomato growers as deficit irrigation strategy for higher yield and quality.
format Article
author Mohammed, H. N.
Tengku Muda Mohamed, Mahmud
Megat Wahab, Puteri Edaroyati
spellingShingle Mohammed, H. N.
Tengku Muda Mohamed, Mahmud
Megat Wahab, Puteri Edaroyati
Deficit irrigation for improving the postharvest quality of lowland tomato fruits
author_facet Mohammed, H. N.
Tengku Muda Mohamed, Mahmud
Megat Wahab, Puteri Edaroyati
author_sort Mohammed, H. N.
title Deficit irrigation for improving the postharvest quality of lowland tomato fruits
title_short Deficit irrigation for improving the postharvest quality of lowland tomato fruits
title_full Deficit irrigation for improving the postharvest quality of lowland tomato fruits
title_fullStr Deficit irrigation for improving the postharvest quality of lowland tomato fruits
title_full_unstemmed Deficit irrigation for improving the postharvest quality of lowland tomato fruits
title_sort deficit irrigation for improving the postharvest quality of lowland tomato fruits
publisher Universiti Putra Malaysia Press
publishDate 2018
url http://psasir.upm.edu.my/id/eprint/64492/1/16%20JTAS%20Vol%2041%20%282%29%20May%202018_JTAS-1220-2017_pg741-758.pdf
http://psasir.upm.edu.my/id/eprint/64492/
http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JTAS%20Vol.%2041%20(2)%20May.%202018/16%20JTAS%20Vol%2041%20(2)%20May%202018_JTAS-1220-2017_pg741-758.pdf
_version_ 1643838039833706496