Alternative method to find the number of points on Koblitz curve

A Koblitz curve Ea is defined over field F2m. Let τ = (-1)1-a+√-7/2 where a ∈ {0, 1} denotes the Frobenius endomorphism from the set E(F2m) to itself. It can be used to improve the performance of computing scalar multiplication on Koblitz Curves. In this paper, another version of formula for τ m = r...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Hadani, Nurul Hafizah, Yunos, Faridah, Kamel Ariffin, Muhammad Rezal, Sapar, Siti Hasana, Nek Abd Rahman, Normahirah
التنسيق: مقال
اللغة:English
منشور في: Institute for Mathematical Research, Universiti Putra Malaysia 2019
الوصول للمادة أونلاين:http://psasir.upm.edu.my/id/eprint/76372/1/2.pdf
http://psasir.upm.edu.my/id/eprint/76372/
http://einspem.upm.edu.my/journal/fullpaper/vol13saugust/2.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:A Koblitz curve Ea is defined over field F2m. Let τ = (-1)1-a+√-7/2 where a ∈ {0, 1} denotes the Frobenius endomorphism from the set E(F2m) to itself. It can be used to improve the performance of computing scalar multiplication on Koblitz Curves. In this paper, another version of formula for τ m = rm + smτ where rm and sm are integers is introduced. Through this approach, we discover an alternative method to find the number of points through the curve Ea.