Variable selection via SCAD-penalized quantile regression for high-dimensional count data

This article introduces a quantile penalized regression technique for variable selection and estimation of conditional quantiles of counts in sparse high-dimensional models. The direct estimation and variable selection of the quantile regression is not feasible due to the discreteness of the count d...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Khan, Dost, Yaqoob, Anum, Iqbal, Nadeem, Abdul Wahid, Khalil, Umair, Khan, Mukhtaj, Abd Rahman, Mohd Amiruddin, Mustafa, Mohd Shafie, Khan, Zardad
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers 2019
Online Access:http://psasir.upm.edu.my/id/eprint/82711/1/Variable%20selection%20.pdf
http://psasir.upm.edu.my/id/eprint/82711/
https://ieeexplore.ieee.org/document/8876588/authors#authors
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
Language: English
Description
Summary:This article introduces a quantile penalized regression technique for variable selection and estimation of conditional quantiles of counts in sparse high-dimensional models. The direct estimation and variable selection of the quantile regression is not feasible due to the discreteness of the count data and non-differentiability of the objective function, therefore, some smoothness must be artificially imposed on the problem. To achieve the necessary smoothness, we use the Jittering process by adding a uniformly distributed noise to the response count variable. The proposed method is compared with the existing penalized regression methods in terms of prediction accuracy and variable selection. We compare the proposed approach in zero-inflated count data regression models and in the presence of outliers. The performance and implementation of the proposed method are illustrated by detailed simulation studies and real data applications.