Development of automatic pest sampling and detection system for cash crops

Detection and counting insects constitute a significant challenge in the field of agriculture, especially in tropical countries like Malaysia along with some temperate regions. However, among various biotic issues of agricultural production, pest infestation is the major challenge with the warm h...

Full description

Saved in:
Bibliographic Details
Main Author: Hadi, Mustafa Kareem
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/89902/1/FK%202020%2025%20ir.pdf
http://psasir.upm.edu.my/id/eprint/89902/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
Language: English
id my.upm.eprints.89902
record_format eprints
spelling my.upm.eprints.899022021-12-06T03:16:15Z http://psasir.upm.edu.my/id/eprint/89902/ Development of automatic pest sampling and detection system for cash crops Hadi, Mustafa Kareem Detection and counting insects constitute a significant challenge in the field of agriculture, especially in tropical countries like Malaysia along with some temperate regions. However, among various biotic issues of agricultural production, pest infestation is the major challenge with the warm humid environment surrounding the crops that encourage the existence survival and proliferation of the pests. As a result, agricultural pests are a serious threat to crops and cause substantial decreases in agricultural yield, causing economic losses as well as adversely affecting the economies of several countries, particularly those that are heavily dependent on agriculture. Therefore, the primary objective of this research is the design and development of a prototype for an automatic Pest Sampling and Detection (PSD) system for cash crops (maize, okra, pineapple, and chili). An automatic system was designed as the hardware part for this system to handle the sampling operation. The system consists of an extendable tripod equipped with a vertical arm with a camera attached, rotary sticky box, protection box, and a controller. The process of insect detection and counting is starting with image acquisition, image preprocessing, and morphological operations. Connected components algorithm was implemented for insect detection and counting. This algorithm can be applied by using MATLAB image processing toolbox. Different kernel functions such as disk, diamond, square, and sphere are used as matching functions for insect detection and counting algorithm. The result of testing the hardware system of the automatic system shows its reliability and flexibility to provide accurate movements in two degrees of freedom as well as its dependability and system protection. Besides that, the result of testing the software system with the conducted experiment shows that the highest counting accuracy by the connected component labeling algorithm is 85.2% by using a sphere kernel function. The accuracy of other kernel functions: disk, diamond, and square are 83.8%, 84.4%, and 62.8% respectively. Finally, it can be concluded that the proposed prototype of an automatic pest sampling and detection system can play a significant role in increasing crop productivity and the management of pest insects in agricultural fields. 2019-11 Thesis NonPeerReviewed text en http://psasir.upm.edu.my/id/eprint/89902/1/FK%202020%2025%20ir.pdf Hadi, Mustafa Kareem (2019) Development of automatic pest sampling and detection system for cash crops. Masters thesis, Universiti Putra Malaysia. Agricultural engineering Pests - Control Cash crops
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
topic Agricultural engineering
Pests - Control
Cash crops
spellingShingle Agricultural engineering
Pests - Control
Cash crops
Hadi, Mustafa Kareem
Development of automatic pest sampling and detection system for cash crops
description Detection and counting insects constitute a significant challenge in the field of agriculture, especially in tropical countries like Malaysia along with some temperate regions. However, among various biotic issues of agricultural production, pest infestation is the major challenge with the warm humid environment surrounding the crops that encourage the existence survival and proliferation of the pests. As a result, agricultural pests are a serious threat to crops and cause substantial decreases in agricultural yield, causing economic losses as well as adversely affecting the economies of several countries, particularly those that are heavily dependent on agriculture. Therefore, the primary objective of this research is the design and development of a prototype for an automatic Pest Sampling and Detection (PSD) system for cash crops (maize, okra, pineapple, and chili). An automatic system was designed as the hardware part for this system to handle the sampling operation. The system consists of an extendable tripod equipped with a vertical arm with a camera attached, rotary sticky box, protection box, and a controller. The process of insect detection and counting is starting with image acquisition, image preprocessing, and morphological operations. Connected components algorithm was implemented for insect detection and counting. This algorithm can be applied by using MATLAB image processing toolbox. Different kernel functions such as disk, diamond, square, and sphere are used as matching functions for insect detection and counting algorithm. The result of testing the hardware system of the automatic system shows its reliability and flexibility to provide accurate movements in two degrees of freedom as well as its dependability and system protection. Besides that, the result of testing the software system with the conducted experiment shows that the highest counting accuracy by the connected component labeling algorithm is 85.2% by using a sphere kernel function. The accuracy of other kernel functions: disk, diamond, and square are 83.8%, 84.4%, and 62.8% respectively. Finally, it can be concluded that the proposed prototype of an automatic pest sampling and detection system can play a significant role in increasing crop productivity and the management of pest insects in agricultural fields.
format Thesis
author Hadi, Mustafa Kareem
author_facet Hadi, Mustafa Kareem
author_sort Hadi, Mustafa Kareem
title Development of automatic pest sampling and detection system for cash crops
title_short Development of automatic pest sampling and detection system for cash crops
title_full Development of automatic pest sampling and detection system for cash crops
title_fullStr Development of automatic pest sampling and detection system for cash crops
title_full_unstemmed Development of automatic pest sampling and detection system for cash crops
title_sort development of automatic pest sampling and detection system for cash crops
publishDate 2019
url http://psasir.upm.edu.my/id/eprint/89902/1/FK%202020%2025%20ir.pdf
http://psasir.upm.edu.my/id/eprint/89902/
_version_ 1718927808599687168