Beberapa Penggunaan Teori Nombor dalam Kriptografi

Penyelidikan yang dilakukan meliputi penggunaan Teori Nombor dalam bidang kriptografi. Melalui penggunaan konsep aritmetik modulo, beberapa kaedah pengkriptanan dibangunkan berorientasikan sistem Saifer Digrafik, RSA (Ron Rivest, Adi Shamir dan Leonard Adleman) dan LUC (fungsi Lucas jadi semula...

全面介紹

Saved in:
書目詳細資料
主要作者: Yunos, Faridah
格式: Thesis
語言:English
Malay
出版: 2001
主題:
在線閱讀:http://psasir.upm.edu.my/id/eprint/9322/1/FSAS_2001_55.pdf
http://psasir.upm.edu.my/id/eprint/9322/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id my.upm.eprints.9322
record_format eprints
spelling my.upm.eprints.93222024-02-20T01:35:38Z http://psasir.upm.edu.my/id/eprint/9322/ Beberapa Penggunaan Teori Nombor dalam Kriptografi Yunos, Faridah Penyelidikan yang dilakukan meliputi penggunaan Teori Nombor dalam bidang kriptografi. Melalui penggunaan konsep aritmetik modulo, beberapa kaedah pengkriptanan dibangunkan berorientasikan sistem Saifer Digrafik, RSA (Ron Rivest, Adi Shamir dan Leonard Adleman) dan LUC (fungsi Lucas jadi semula linear berdarjah dua). Ketiga-tiga kaedah tersebut dikaji dan berasaskan teknik tersebut, kaedah bam dibina. Berdasarkan algoritma pengkriptanan yang dibina, suatu kaedah penghuraian diperkenalkan. Keberkesanan teknik yang dibangunkan ini diilustrasikan melalui beberapa contoh. Terdapat tiga bahagian utama yang dibincangkan dalam tesis ini. Pada bahagian pertama, kajian ini menyelidiki kelemahan yang wujud dalam sistem Saifer Digrafik C2xj == A2x2P2xj (mod 26) terutamanya di segi analisis kekerapan huruf teks saifer dan analisis kunci pengkriptan Kajian ini dimulai dengan meneliti dua pembahagi sepunya terbesar bagi penentu matriks pengkriptan, IA2x21 dan 26. dilanjutkan kepada transformasi dwifungsi, Pengkriptanan mesej trifungsi seterusnya pengitlakannya menghasilkan transformasi Pengkriptanan Polifungsi Saifer Digrafik bermodulo 26 dengan mengkategorikannya kepada dua kunci pengkriptan iaitu kunci pengkriptan sarna dan kunci pengkriptan berbeza pada setiap transformasi. Berlandaskan teknik yang sarna dan berkonsepkan sistem pemecahan nombor-nombor bersepadan dalarn teks asal kepada beberapa digit tertentu, penerokaan diperIuaskan lagi kepada sistem Pengkriptanan Polifungsi Saifer digrafik bermodulo suatu integer positif N,. Kajian ini juga menerangkan mekanisma penyimpanan kunci rahsia bersifat simetri yang mungkin diperlukan oleh sistem Polifungsi Saifer Digrafik dengan kunci pengkriptan berbeza pada setiap transformasi. Di bahagian kedua, bertitik tolak daripada transformasi LUC dengan fungsi jadi semula linear berdarjah dua VnCP,Q) == PVn-/CP,Q) -QVn_2CP,Q)modN dan Un CP,Q) == PUn-/CP,Q) -QUn_2(P,Q)modN dengan pendekatan Q = 1, sistem LUC dikembangkan lagi sehingga penghantaran mesej melalui transformasi polifungsi. Penyelidikan ini membuktikan bahawa fungsi Lehmer Totient SeN) sentiasa sarna pada setiap transformasi bagi membolehkan perlaksanaan penghuraian mesej saifer. Bahagian ketiga pula membentangkan kaedah gabungan sistem RSADigrafik dan Digrafik-LUC. Kedua-dua sistem ini memperbaiki kelemahan sistem Saifer Digrafik yang terdahulu. Kajian ini turnt mencadangkan gabungan LUC-RSA untuk menghindarkan cubaan mengesan mesej asal dengan Teorem Baki Cina dalam sistem RSA. Untuk setiap sistem kriptografi yang dibangunkan, kajian ini juga menentukan syarat mesej asal tidak menyamai mesej saifer. 2001-02 Thesis NonPeerReviewed text en http://psasir.upm.edu.my/id/eprint/9322/1/FSAS_2001_55.pdf Yunos, Faridah (2001) Beberapa Penggunaan Teori Nombor dalam Kriptografi. Masters thesis, Universiti Putra Malaysia. Number theory - Case studies Cryptography Malay
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
Malay
topic Number theory - Case studies
Cryptography
spellingShingle Number theory - Case studies
Cryptography
Yunos, Faridah
Beberapa Penggunaan Teori Nombor dalam Kriptografi
description Penyelidikan yang dilakukan meliputi penggunaan Teori Nombor dalam bidang kriptografi. Melalui penggunaan konsep aritmetik modulo, beberapa kaedah pengkriptanan dibangunkan berorientasikan sistem Saifer Digrafik, RSA (Ron Rivest, Adi Shamir dan Leonard Adleman) dan LUC (fungsi Lucas jadi semula linear berdarjah dua). Ketiga-tiga kaedah tersebut dikaji dan berasaskan teknik tersebut, kaedah bam dibina. Berdasarkan algoritma pengkriptanan yang dibina, suatu kaedah penghuraian diperkenalkan. Keberkesanan teknik yang dibangunkan ini diilustrasikan melalui beberapa contoh. Terdapat tiga bahagian utama yang dibincangkan dalam tesis ini. Pada bahagian pertama, kajian ini menyelidiki kelemahan yang wujud dalam sistem Saifer Digrafik C2xj == A2x2P2xj (mod 26) terutamanya di segi analisis kekerapan huruf teks saifer dan analisis kunci pengkriptan Kajian ini dimulai dengan meneliti dua pembahagi sepunya terbesar bagi penentu matriks pengkriptan, IA2x21 dan 26. dilanjutkan kepada transformasi dwifungsi, Pengkriptanan mesej trifungsi seterusnya pengitlakannya menghasilkan transformasi Pengkriptanan Polifungsi Saifer Digrafik bermodulo 26 dengan mengkategorikannya kepada dua kunci pengkriptan iaitu kunci pengkriptan sarna dan kunci pengkriptan berbeza pada setiap transformasi. Berlandaskan teknik yang sarna dan berkonsepkan sistem pemecahan nombor-nombor bersepadan dalarn teks asal kepada beberapa digit tertentu, penerokaan diperIuaskan lagi kepada sistem Pengkriptanan Polifungsi Saifer digrafik bermodulo suatu integer positif N,. Kajian ini juga menerangkan mekanisma penyimpanan kunci rahsia bersifat simetri yang mungkin diperlukan oleh sistem Polifungsi Saifer Digrafik dengan kunci pengkriptan berbeza pada setiap transformasi. Di bahagian kedua, bertitik tolak daripada transformasi LUC dengan fungsi jadi semula linear berdarjah dua VnCP,Q) == PVn-/CP,Q) -QVn_2CP,Q)modN dan Un CP,Q) == PUn-/CP,Q) -QUn_2(P,Q)modN dengan pendekatan Q = 1, sistem LUC dikembangkan lagi sehingga penghantaran mesej melalui transformasi polifungsi. Penyelidikan ini membuktikan bahawa fungsi Lehmer Totient SeN) sentiasa sarna pada setiap transformasi bagi membolehkan perlaksanaan penghuraian mesej saifer. Bahagian ketiga pula membentangkan kaedah gabungan sistem RSADigrafik dan Digrafik-LUC. Kedua-dua sistem ini memperbaiki kelemahan sistem Saifer Digrafik yang terdahulu. Kajian ini turnt mencadangkan gabungan LUC-RSA untuk menghindarkan cubaan mengesan mesej asal dengan Teorem Baki Cina dalam sistem RSA. Untuk setiap sistem kriptografi yang dibangunkan, kajian ini juga menentukan syarat mesej asal tidak menyamai mesej saifer.
format Thesis
author Yunos, Faridah
author_facet Yunos, Faridah
author_sort Yunos, Faridah
title Beberapa Penggunaan Teori Nombor dalam Kriptografi
title_short Beberapa Penggunaan Teori Nombor dalam Kriptografi
title_full Beberapa Penggunaan Teori Nombor dalam Kriptografi
title_fullStr Beberapa Penggunaan Teori Nombor dalam Kriptografi
title_full_unstemmed Beberapa Penggunaan Teori Nombor dalam Kriptografi
title_sort beberapa penggunaan teori nombor dalam kriptografi
publishDate 2001
url http://psasir.upm.edu.my/id/eprint/9322/1/FSAS_2001_55.pdf
http://psasir.upm.edu.my/id/eprint/9322/
_version_ 1792154414348238848