Comparison of the AIM conjugate gradient method under exact and inexact line search for solving unconstrained optimization problems
The nonlinear conjugate gradient (CG) method is essential in solving large-scale unconstrained optimization problems due to its simplicity and low memory requirement. Numerous studies and improvements have been made recently to improve this strategy. Hence, this study will create a modified CG metho...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
التنسيق: | مقال |
منشور في: |
Malaysian Mathematical Science Society
2021
|
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/96474/ https://myjms.mohe.gov.my/index.php/dismath/article/view/15550/7995 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Universiti Putra Malaysia |
الملخص: | The nonlinear conjugate gradient (CG) method is essential in solving large-scale unconstrained optimization problems due to its simplicity and low memory requirement. Numerous studies and improvements have been made recently to improve this strategy. Hence, this study will create a modified CG method with inexact line search, Strong Wolfe-Powell conditions. The global convergence and sufficient descent properties are established by using an inexact line search. The numerical result demonstrates that the modified method with inexact line search is superior and more efficient when compared to other CG methods. |
---|