Supercapacitor based on activated carbon and hybrid solid polymer electrolyte

The main objective of the present work is to develop a high conducting hybrid solid polymer electrolyte (HSPE) using polyvinyl alcohol as the host polymer and H 3PO 4 as the ionic dopant. Owing to its porous nature, the introduction of a Whatman filter paper helps to increase the electrical conducti...

Full description

Saved in:
Bibliographic Details
Main Authors: M.A., Hashim, A.S.A., Khiar
Format: Conference Paper
Language:en_US
Published: 2015
Subjects:
Online Access:http://ddms.usim.edu.my/handle/123456789/9244
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Sains Islam Malaysia
Language: en_US
Description
Summary:The main objective of the present work is to develop a high conducting hybrid solid polymer electrolyte (HSPE) using polyvinyl alcohol as the host polymer and H 3PO 4 as the ionic dopant. Owing to its porous nature, the introduction of a Whatman filter paper helps to increase the electrical conductivity by acting as a support to the electrolyte system. This allows more H 3PO 4 acid to be loaded into the system and thus helps to improve the mechanical strength of the electrolytes. The highest conducting HSPE was obtained at 1•04×10 -4 S cm -1 for samples containing 70% loading of acid (P30H70-C). Such conductivity is sufficient for application in an electrical double layer capacitor (EDLC). The EDLC was fabricated using the hybrid electrolyte with its activated carbon electrodes soaked in H 3PO 4. A specific capacitance of 34 F g -1 with internal resistance of as low as 1 Ω cm -2 was obtained when the cell was charged-discharged at 10 mA. The working voltage for this EDLC is 1 V with efficiency ranging between 85 and 97%. © W. S. Maney & Son Ltd. 2011.