A Menu Planning Model Using Hybrid Genetic Algorithm And Fuzzy Reasoning: A Study On Malaysian Geriatric Cancer Patients
Dewasa ini, terdapat banyak model perancangan menu yang menyediakan nasihat umum kepada pelanggan di pasaran. Namun, penyelesaian yang dijana daripada model ini biasanya sangat subjektif dan sukar untuk diwakili secara sistematik. Oleh itu, pemakanan yang betul bagi warga tua adalah penting untuk...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://eprints.usm.my/31410/1/NGO_HEA_CHOON_24.pdf http://eprints.usm.my/31410/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Sains Malaysia |
Language: | English |
id |
my.usm.eprints.31410 |
---|---|
record_format |
eprints |
spelling |
my.usm.eprints.31410 http://eprints.usm.my/31410/ A Menu Planning Model Using Hybrid Genetic Algorithm And Fuzzy Reasoning: A Study On Malaysian Geriatric Cancer Patients Ngo , Hea Choon QA75.5-76.95 Electronic computers. Computer science Dewasa ini, terdapat banyak model perancangan menu yang menyediakan nasihat umum kepada pelanggan di pasaran. Namun, penyelesaian yang dijana daripada model ini biasanya sangat subjektif dan sukar untuk diwakili secara sistematik. Oleh itu, pemakanan yang betul bagi warga tua adalah penting untuk mengekalkan kesihatan dan kesejahteraan. Kajian ini menghasilkan model perancangan menu berasaskan ontologi menggunakan algoritma genetik hibrid dan penaakulan kabur terhadap pesakit kanser geriatrik di Malaysia. Kajian ini adalah bertujuan untuk mengemukakan perwakilan pelan diet berdasarkan ontologi pelan diet; mereka bentuk enjin perancangan dengan mengintegrasikan algoritma genetik dengan pencarian setempat untuk memperbaiki pelan menu; membangunkan pelan menu untuk pesakit tersebut dengan menggunakan mekanisme penaakulan kabur. Dengan tujuan untuk merancang menu yang sihat kepada pesakit, ontologi digunakan untuk mengklasifikasikan nutrien, jenis makanan, struktur pemakanan dan profil peribadi. Selain itu, algoritma genetik hibrid (HGA) digunakan untuk memastikan bahawa perancangan menu dapat memenuhi semua objektif dan kekangan yang telah ditetapkan. Tambahan pula, kawalan logik kabur (FLC) diaplikasikan dalam pemodelan fungsi keahlian set kabur bagi menganggarkan keperluan pemakanan. Nowadays, there are many diet recommendation models in the market that provide general advice to the clients. However, the generated menu plan from these models are usually very subjective and difficult to be represented systematically. Thus, proper nutrition for the elderly is important to maintain health and well-being, which can lead to fulfilling and independent lives. This research presents a study on ontology-based menu planning model using hybrid genetic algorithm and fuzzy reasoning for Malaysian geriatric cancer patients. The proposed work aims to produce a diet plan representation based on diet plan ontology; design a planning engine by integrating genetic algorithm with local search technique to enhance menu planning; and develop a menu planning approach to cater for Malaysian geriatric cancer patients using fuzzy reasoning mechanism. With the aim of planning healthy menu to patients, ontology is used to classify nutrients, food groups, meal structure and personal profile. Following that, hybrid genetic algorithm (HGA) is employed to ensure that the constructed menu satisfies all the objectives and predefined constraints. Furthermore, a fuzzy logic control (FLC) was applied in the modeling of membership functions of fuzzy sets for estimating nutrition needs. 2016-04 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/31410/1/NGO_HEA_CHOON_24.pdf Ngo , Hea Choon (2016) A Menu Planning Model Using Hybrid Genetic Algorithm And Fuzzy Reasoning: A Study On Malaysian Geriatric Cancer Patients. PhD thesis, Universiti Sains Malaysia. |
institution |
Universiti Sains Malaysia |
building |
Hamzah Sendut Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Sains Malaysia |
content_source |
USM Institutional Repository |
url_provider |
http://eprints.usm.my/ |
language |
English |
topic |
QA75.5-76.95 Electronic computers. Computer science |
spellingShingle |
QA75.5-76.95 Electronic computers. Computer science Ngo , Hea Choon A Menu Planning Model Using Hybrid Genetic Algorithm And Fuzzy Reasoning: A Study On Malaysian Geriatric Cancer Patients |
description |
Dewasa ini, terdapat banyak model perancangan menu yang menyediakan
nasihat umum kepada pelanggan di pasaran. Namun, penyelesaian yang dijana daripada
model ini biasanya sangat subjektif dan sukar untuk diwakili secara sistematik. Oleh itu,
pemakanan yang betul bagi warga tua adalah penting untuk mengekalkan kesihatan dan
kesejahteraan. Kajian ini menghasilkan model perancangan menu berasaskan ontologi
menggunakan algoritma genetik hibrid dan penaakulan kabur terhadap pesakit kanser
geriatrik di Malaysia. Kajian ini adalah bertujuan untuk mengemukakan perwakilan
pelan diet berdasarkan ontologi pelan diet; mereka bentuk enjin perancangan dengan
mengintegrasikan algoritma genetik dengan pencarian setempat untuk memperbaiki
pelan menu; membangunkan pelan menu untuk pesakit tersebut dengan menggunakan
mekanisme penaakulan kabur. Dengan tujuan untuk merancang menu yang sihat kepada
pesakit, ontologi digunakan untuk mengklasifikasikan nutrien, jenis makanan, struktur pemakanan dan profil peribadi. Selain itu, algoritma genetik hibrid (HGA) digunakan untuk memastikan bahawa perancangan menu dapat memenuhi semua objektif dan kekangan yang telah ditetapkan. Tambahan pula, kawalan logik kabur (FLC) diaplikasikan dalam pemodelan fungsi keahlian set kabur bagi menganggarkan keperluan pemakanan.
Nowadays, there are many diet recommendation models in the market that
provide general advice to the clients. However, the generated menu plan from these
models are usually very subjective and difficult to be represented systematically. Thus,
proper nutrition for the elderly is important to maintain health and well-being, which can
lead to fulfilling and independent lives. This research presents a study on ontology-based
menu planning model using hybrid genetic algorithm and fuzzy reasoning for Malaysian
geriatric cancer patients. The proposed work aims to produce a diet plan representation
based on diet plan ontology; design a planning engine by integrating genetic algorithm
with local search technique to enhance menu planning; and develop a menu planning
approach to cater for Malaysian geriatric cancer patients using fuzzy reasoning
mechanism. With the aim of planning healthy menu to patients, ontology is used to
classify nutrients, food groups, meal structure and personal profile. Following that,
hybrid genetic algorithm (HGA) is employed to ensure that the constructed menu
satisfies all the objectives and predefined constraints. Furthermore, a fuzzy logic control
(FLC) was applied in the modeling of membership functions of fuzzy sets for estimating
nutrition needs.
|
format |
Thesis |
author |
Ngo , Hea Choon |
author_facet |
Ngo , Hea Choon |
author_sort |
Ngo , Hea Choon |
title |
A Menu Planning Model Using Hybrid Genetic Algorithm And Fuzzy Reasoning: A Study On Malaysian Geriatric Cancer Patients
|
title_short |
A Menu Planning Model Using Hybrid Genetic Algorithm And Fuzzy Reasoning: A Study On Malaysian Geriatric Cancer Patients
|
title_full |
A Menu Planning Model Using Hybrid Genetic Algorithm And Fuzzy Reasoning: A Study On Malaysian Geriatric Cancer Patients
|
title_fullStr |
A Menu Planning Model Using Hybrid Genetic Algorithm And Fuzzy Reasoning: A Study On Malaysian Geriatric Cancer Patients
|
title_full_unstemmed |
A Menu Planning Model Using Hybrid Genetic Algorithm And Fuzzy Reasoning: A Study On Malaysian Geriatric Cancer Patients
|
title_sort |
menu planning model using hybrid genetic algorithm and fuzzy reasoning: a study on malaysian geriatric cancer patients |
publishDate |
2016 |
url |
http://eprints.usm.my/31410/1/NGO_HEA_CHOON_24.pdf http://eprints.usm.my/31410/ |
_version_ |
1643707386356039680 |