Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm

Algoritma perambatan balik telah terbukti sebagai salah satu algoritma rangkaian neural yang paling berjaya. Namun demikian, seperti kebanyakan kaedah pengoptimuman yang berasaskan kecerunan, ianya menumpu dengan lamb at dan keupayaannya berkurangan bagi tugas-tugas yang lebih besar dan kompleks....

Full description

Saved in:
Bibliographic Details
Main Author: Zainuddin, Zarita
Format: Thesis
Language:English
Published: 2001
Subjects:
Online Access:http://eprints.usm.my/31464/1/ZARITA_ZAINUDDIN.pdf
http://eprints.usm.my/31464/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Sains Malaysia
Language: English
id my.usm.eprints.31464
record_format eprints
spelling my.usm.eprints.31464 http://eprints.usm.my/31464/ Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm Zainuddin, Zarita QA1-939 Mathematics Algoritma perambatan balik telah terbukti sebagai salah satu algoritma rangkaian neural yang paling berjaya. Namun demikian, seperti kebanyakan kaedah pengoptimuman yang berasaskan kecerunan, ianya menumpu dengan lamb at dan keupayaannya berkurangan bagi tugas-tugas yang lebih besar dan kompleks. Dalam tesis ini, faktor-faktor yang menguasai kepantasan pembelajaran algoritma perambatan balik diselidik dan dianalisa secara matematik untuk membangunkan strategi-strategi bagi memperbaiki prestasi algoritma pembelajaran rangkaian neural ini. Faktor-faktor ini meliputi pilihan pemberat awal, pilihan fungsi pengaktifan dan nilai sasaran serta dua parameter perambatan, iaitu kadar pembelajaran dan faktor momentum. The backpropagation algorithm has proven to be one of the most successful neural network learning algorithms. However, as with many gradient based optimization methods, it converges slowly and it scales up poorly as tasks become larger and more complex. In this thesis, factors that govern the learning speed of the backpropagation algorithm are investigated and mathematically analyzed in order to develop strategies to improve the performance of this neural network learning algorithm. These factors include the choice of initial weights, the choice of activation function and target values, and the two backpropagation parameters, the learning rate and the momentum factor. 2001-06 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/31464/1/ZARITA_ZAINUDDIN.pdf Zainuddin, Zarita (2001) Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm. PhD thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic QA1-939 Mathematics
spellingShingle QA1-939 Mathematics
Zainuddin, Zarita
Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm
description Algoritma perambatan balik telah terbukti sebagai salah satu algoritma rangkaian neural yang paling berjaya. Namun demikian, seperti kebanyakan kaedah pengoptimuman yang berasaskan kecerunan, ianya menumpu dengan lamb at dan keupayaannya berkurangan bagi tugas-tugas yang lebih besar dan kompleks. Dalam tesis ini, faktor-faktor yang menguasai kepantasan pembelajaran algoritma perambatan balik diselidik dan dianalisa secara matematik untuk membangunkan strategi-strategi bagi memperbaiki prestasi algoritma pembelajaran rangkaian neural ini. Faktor-faktor ini meliputi pilihan pemberat awal, pilihan fungsi pengaktifan dan nilai sasaran serta dua parameter perambatan, iaitu kadar pembelajaran dan faktor momentum. The backpropagation algorithm has proven to be one of the most successful neural network learning algorithms. However, as with many gradient based optimization methods, it converges slowly and it scales up poorly as tasks become larger and more complex. In this thesis, factors that govern the learning speed of the backpropagation algorithm are investigated and mathematically analyzed in order to develop strategies to improve the performance of this neural network learning algorithm. These factors include the choice of initial weights, the choice of activation function and target values, and the two backpropagation parameters, the learning rate and the momentum factor.
format Thesis
author Zainuddin, Zarita
author_facet Zainuddin, Zarita
author_sort Zainuddin, Zarita
title Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm
title_short Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm
title_full Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm
title_fullStr Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm
title_full_unstemmed Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm
title_sort acceleration strategies for the backpropagation neural network learning algorithm
publishDate 2001
url http://eprints.usm.my/31464/1/ZARITA_ZAINUDDIN.pdf
http://eprints.usm.my/31464/
_version_ 1643707400980529152