An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification

Pengelasan teks automatik adalah penting kerana peningkatan bilangan dokumen digital dan oleh itu ia perlu diurus. Kaedah pemodelan statistik terkini tidak memberi maklumat berguna yang mencukupi tentang topik untuk setiap ciri dan kategori. Tambahan pula, penyarian sifat menggunakan frekuensi kata-...

Full description

Saved in:
Bibliographic Details
Main Author: Kadhim, Ammar Ismael
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.usm.my/31479/1/AMMAR_ISMAEL_KADHIM_24.pdf
http://eprints.usm.my/31479/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Sains Malaysia
Language: English
id my.usm.eprints.31479
record_format eprints
spelling my.usm.eprints.31479 http://eprints.usm.my/31479/ An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification Kadhim, Ammar Ismael QA75.5-76.95 Electronic computers. Computer science Pengelasan teks automatik adalah penting kerana peningkatan bilangan dokumen digital dan oleh itu ia perlu diurus. Kaedah pemodelan statistik terkini tidak memberi maklumat berguna yang mencukupi tentang topik untuk setiap ciri dan kategori. Tambahan pula, penyarian sifat menggunakan frekuensi kata-frekuensi dokumen songsang (TF-IDF) tradisional menghasilkan pengenalan kategori yang terlalu banyak untuk sesuatu dokumen. Dalam usaha pengelasan pula, kaedah k-jiran terdekat (k-NN) sedia ada dengan jarak Euclid dan skor keserupaan kosinus menghasilkan julat varians yang besar dalam prestasinya. Untuk menangani isu ini, kajian ini mengelaskan topik untuk teks pendek dan panjang dengan menggunakan pendekatan baharu untuk tahap-tahap utama pengelasan teks (iaitu penyarian sifat dan pengelasan teks). Kajian ini juga memperkenalkan TD-IDF dengan logaritma dan k-NN dengan skor keserupaan kosinus yang baharu untuk penyarian sifat dan pengelasan masing-masing. Lagipun, faktor yang memberi kesan terhadap prestasi pembelajaran mesin berselia juga dikenalpasti. Automatic text classification is important because of the increased availability of digital documents and therefore the need to organize them. The current state-of-the-art statistical modeling approaches do not provide sufficient useful information on the topics for each feature and category. Furthermore, feature extraction using traditional term frequency-inverse document frequency (TF-IDF) results in the identification of too many categories for a particular document. In terms of classification, current k-NN approaches with Euclidean distance and cosine similarity score produce a wide range of variance in performance. To address these issues, this study classifies topics for short and long texts using a new method for the main stage (i.e., feature extraction and text classification). The study also introduces TF-IDF with logarithm and k-NN with a new cosine similarity score for feature extraction and classification, respectively. 2016-03 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/31479/1/AMMAR_ISMAEL_KADHIM_24.pdf Kadhim, Ammar Ismael (2016) An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification. PhD thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic QA75.5-76.95 Electronic computers. Computer science
spellingShingle QA75.5-76.95 Electronic computers. Computer science
Kadhim, Ammar Ismael
An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
description Pengelasan teks automatik adalah penting kerana peningkatan bilangan dokumen digital dan oleh itu ia perlu diurus. Kaedah pemodelan statistik terkini tidak memberi maklumat berguna yang mencukupi tentang topik untuk setiap ciri dan kategori. Tambahan pula, penyarian sifat menggunakan frekuensi kata-frekuensi dokumen songsang (TF-IDF) tradisional menghasilkan pengenalan kategori yang terlalu banyak untuk sesuatu dokumen. Dalam usaha pengelasan pula, kaedah k-jiran terdekat (k-NN) sedia ada dengan jarak Euclid dan skor keserupaan kosinus menghasilkan julat varians yang besar dalam prestasinya. Untuk menangani isu ini, kajian ini mengelaskan topik untuk teks pendek dan panjang dengan menggunakan pendekatan baharu untuk tahap-tahap utama pengelasan teks (iaitu penyarian sifat dan pengelasan teks). Kajian ini juga memperkenalkan TD-IDF dengan logaritma dan k-NN dengan skor keserupaan kosinus yang baharu untuk penyarian sifat dan pengelasan masing-masing. Lagipun, faktor yang memberi kesan terhadap prestasi pembelajaran mesin berselia juga dikenalpasti. Automatic text classification is important because of the increased availability of digital documents and therefore the need to organize them. The current state-of-the-art statistical modeling approaches do not provide sufficient useful information on the topics for each feature and category. Furthermore, feature extraction using traditional term frequency-inverse document frequency (TF-IDF) results in the identification of too many categories for a particular document. In terms of classification, current k-NN approaches with Euclidean distance and cosine similarity score produce a wide range of variance in performance. To address these issues, this study classifies topics for short and long texts using a new method for the main stage (i.e., feature extraction and text classification). The study also introduces TF-IDF with logarithm and k-NN with a new cosine similarity score for feature extraction and classification, respectively.
format Thesis
author Kadhim, Ammar Ismael
author_facet Kadhim, Ammar Ismael
author_sort Kadhim, Ammar Ismael
title An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title_short An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title_full An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title_fullStr An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title_full_unstemmed An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title_sort improved k-nearest neighbors approach using modified term weighting and similarity coefficient for text classification
publishDate 2016
url http://eprints.usm.my/31479/1/AMMAR_ISMAEL_KADHIM_24.pdf
http://eprints.usm.my/31479/
_version_ 1643707405159104512