Division-Based Methods For Large Point Sets Registration

Pendaftaran set titik adalah satu langkah penting untuk mengukur persamaan antara dua set titik dan digunakan secara meluas dalam penglihatan komputer, grafik komputer, analisis imej perubatan, dan sebagainya. Peralatan semasa mampu menyediakan data dengan butiran terperinci sebagai set titik bes...

Full description

Saved in:
Bibliographic Details
Main Author: Chen , Junfen
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.usm.my/31827/1/CHEN_JUNFEN_24%28NN%29.pdf
http://eprints.usm.my/31827/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Sains Malaysia
Language: English
id my.usm.eprints.31827
record_format eprints
spelling my.usm.eprints.31827 http://eprints.usm.my/31827/ Division-Based Methods For Large Point Sets Registration Chen , Junfen QA75.5-76.95 Electronic computers. Computer science Pendaftaran set titik adalah satu langkah penting untuk mengukur persamaan antara dua set titik dan digunakan secara meluas dalam penglihatan komputer, grafik komputer, analisis imej perubatan, dan sebagainya. Peralatan semasa mampu menyediakan data dengan butiran terperinci sebagai set titik besar. Walau bagaimanapun, prestasi kaedah pendaftaran konvensional menurun secara mendadak apabila saiz set titik meningkat. Dalam tesis ini, tiga kaedah pendaftaran set titik terkenal dan antara yang mempunyai prestasi terbaik dipertimbangkan untuk mengkaji pengubahan kaedah konvensional kepada kaedah yang menangani pendaftaran set titik besar dengan cekap. Kaedah-kaedah tersebut adalah Lelaran Titik Terdekat (ICP), Peralihan Titik Bersambung (CPD) dan Model Campuran Gaussian berasaskan Plat-nipis Splin. Point sets registration is a key step for measuring the similarity between two point sets and widely used in various fields such as computer vision, computer graphics, medical image analysis, to name a few. The current devices can capture data with great details as large point set. However, conventional registration methods slow down dramatically as the size of the point set increased. In this thesis, three well-known and among-best-performance point sets registration methods incorporating division schemes are considered to study transforming conventional methods to efficiently deal with large point sets registration. These methods are Iterative Closest Point (ICP), Coherent Point Drift (CPD), and Gaussian mixture models based on thin-plate splines (GMM-TPS). 2016-03 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/31827/1/CHEN_JUNFEN_24%28NN%29.pdf Chen , Junfen (2016) Division-Based Methods For Large Point Sets Registration. PhD thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic QA75.5-76.95 Electronic computers. Computer science
spellingShingle QA75.5-76.95 Electronic computers. Computer science
Chen , Junfen
Division-Based Methods For Large Point Sets Registration
description Pendaftaran set titik adalah satu langkah penting untuk mengukur persamaan antara dua set titik dan digunakan secara meluas dalam penglihatan komputer, grafik komputer, analisis imej perubatan, dan sebagainya. Peralatan semasa mampu menyediakan data dengan butiran terperinci sebagai set titik besar. Walau bagaimanapun, prestasi kaedah pendaftaran konvensional menurun secara mendadak apabila saiz set titik meningkat. Dalam tesis ini, tiga kaedah pendaftaran set titik terkenal dan antara yang mempunyai prestasi terbaik dipertimbangkan untuk mengkaji pengubahan kaedah konvensional kepada kaedah yang menangani pendaftaran set titik besar dengan cekap. Kaedah-kaedah tersebut adalah Lelaran Titik Terdekat (ICP), Peralihan Titik Bersambung (CPD) dan Model Campuran Gaussian berasaskan Plat-nipis Splin. Point sets registration is a key step for measuring the similarity between two point sets and widely used in various fields such as computer vision, computer graphics, medical image analysis, to name a few. The current devices can capture data with great details as large point set. However, conventional registration methods slow down dramatically as the size of the point set increased. In this thesis, three well-known and among-best-performance point sets registration methods incorporating division schemes are considered to study transforming conventional methods to efficiently deal with large point sets registration. These methods are Iterative Closest Point (ICP), Coherent Point Drift (CPD), and Gaussian mixture models based on thin-plate splines (GMM-TPS).
format Thesis
author Chen , Junfen
author_facet Chen , Junfen
author_sort Chen , Junfen
title Division-Based Methods For Large Point Sets Registration
title_short Division-Based Methods For Large Point Sets Registration
title_full Division-Based Methods For Large Point Sets Registration
title_fullStr Division-Based Methods For Large Point Sets Registration
title_full_unstemmed Division-Based Methods For Large Point Sets Registration
title_sort division-based methods for large point sets registration
publishDate 2016
url http://eprints.usm.my/31827/1/CHEN_JUNFEN_24%28NN%29.pdf
http://eprints.usm.my/31827/
_version_ 1643707490992390144