Ocean Colour Remote Sensing Of Case 2 Waters Using An Optimised Neural Network

Kajian ini memberi tumpuan pada pembangunan algoritma baru untuk mendapatkan produk warna laut di kawasan perairan kes 2 menggunakan model rangkain neural (NN) dari pelbagai jenis data penderiaan jauh sebagai input. Model NN dan parameter latihan dioptimumkan dengan input yang dipilih berdasarkan an...

Full description

Saved in:
Bibliographic Details
Main Author: Anwar, Saumi Syahreza
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.usm.my/32007/1/SAUMI_SYAHREZA_24%28NN%29.pdf
http://eprints.usm.my/32007/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Sains Malaysia
Language: English
id my.usm.eprints.32007
record_format eprints
spelling my.usm.eprints.32007 http://eprints.usm.my/32007/ Ocean Colour Remote Sensing Of Case 2 Waters Using An Optimised Neural Network Anwar, Saumi Syahreza QC1-999 Physics Kajian ini memberi tumpuan pada pembangunan algoritma baru untuk mendapatkan produk warna laut di kawasan perairan kes 2 menggunakan model rangkain neural (NN) dari pelbagai jenis data penderiaan jauh sebagai input. Model NN dan parameter latihan dioptimumkan dengan input yang dipilih berdasarkan analisis korelasi (CA) dan analisis komponen utama (PCA). Di pesisiran pantai Kelantan, penggunaan data spektra pantulan in situ dan simulasi penderiaan jauh satelit telah dikaji untuk menganggar dua parameter kejelasan iaitu kekeruhan (TURB) dan cakera kedalaman Sechhi (SDD). Data simulasi Landsat TM dan AVNIR-2 diuji berdasarkan pengukuran spektra pantulan in situ menggunakan ASD spectroradiometer. Keputusan menunjukkan bahawa data simulasi Landsat TM dan AVNIR-2 membenarkan tafsiran TURB dan SDD. Di kawasan pesisiran pantai Pulau Pinang, penggunaan data satelit penderiaan jauh tunggal dan gabungan pelbagai tarikh telah dikaji untuk menganggar sediment terampai (Cs) dan kepekatan klorofil (Cchl). Pengukuran sampel air pelbagai tarikh telah dibuat selari dengan perolehan data satelit Landsat TM dan AVNIR-2 di lokasi terpilih dari Februari 1999 hingga Mac 2011. This study focused on the development of the new algorithm for retrieving ocean colour products of Case 2 water types using the neural network (NN) model and multiple types of remotely sensed data as inputs. The NN model architecture and training parameters were optimised, with inputs being selected based correlation analysis (CA) and principal component analysis (PCA). In Kelantan coastal waters, the use of in situ reflectance spectra and simulated satellite data for estimation of two water clarity parameters namely turbidity (TURB) and Secchi disk depth (SDD) have been studied. The simulated Landsat TM and AVNIR-2 data were tested against in situ reflectance spectra measurements using ASD Spectroradiometer. The results show that the simulated Landsat TM and AVNIR-2 data enables the interpretation of TURB and SDD. In Penang coastal area, the use of single and multitemporal remote sensing data for estimation of Cs and Cchl has been studied. Multidate in-situ water sample measurements concurrent with Landsat TM and AVNIR-2 satellite data were obtained in selected locations from February 1999 to March 2011. 2016-03 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/32007/1/SAUMI_SYAHREZA_24%28NN%29.pdf Anwar, Saumi Syahreza (2016) Ocean Colour Remote Sensing Of Case 2 Waters Using An Optimised Neural Network. PhD thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic QC1-999 Physics
spellingShingle QC1-999 Physics
Anwar, Saumi Syahreza
Ocean Colour Remote Sensing Of Case 2 Waters Using An Optimised Neural Network
description Kajian ini memberi tumpuan pada pembangunan algoritma baru untuk mendapatkan produk warna laut di kawasan perairan kes 2 menggunakan model rangkain neural (NN) dari pelbagai jenis data penderiaan jauh sebagai input. Model NN dan parameter latihan dioptimumkan dengan input yang dipilih berdasarkan analisis korelasi (CA) dan analisis komponen utama (PCA). Di pesisiran pantai Kelantan, penggunaan data spektra pantulan in situ dan simulasi penderiaan jauh satelit telah dikaji untuk menganggar dua parameter kejelasan iaitu kekeruhan (TURB) dan cakera kedalaman Sechhi (SDD). Data simulasi Landsat TM dan AVNIR-2 diuji berdasarkan pengukuran spektra pantulan in situ menggunakan ASD spectroradiometer. Keputusan menunjukkan bahawa data simulasi Landsat TM dan AVNIR-2 membenarkan tafsiran TURB dan SDD. Di kawasan pesisiran pantai Pulau Pinang, penggunaan data satelit penderiaan jauh tunggal dan gabungan pelbagai tarikh telah dikaji untuk menganggar sediment terampai (Cs) dan kepekatan klorofil (Cchl). Pengukuran sampel air pelbagai tarikh telah dibuat selari dengan perolehan data satelit Landsat TM dan AVNIR-2 di lokasi terpilih dari Februari 1999 hingga Mac 2011. This study focused on the development of the new algorithm for retrieving ocean colour products of Case 2 water types using the neural network (NN) model and multiple types of remotely sensed data as inputs. The NN model architecture and training parameters were optimised, with inputs being selected based correlation analysis (CA) and principal component analysis (PCA). In Kelantan coastal waters, the use of in situ reflectance spectra and simulated satellite data for estimation of two water clarity parameters namely turbidity (TURB) and Secchi disk depth (SDD) have been studied. The simulated Landsat TM and AVNIR-2 data were tested against in situ reflectance spectra measurements using ASD Spectroradiometer. The results show that the simulated Landsat TM and AVNIR-2 data enables the interpretation of TURB and SDD. In Penang coastal area, the use of single and multitemporal remote sensing data for estimation of Cs and Cchl has been studied. Multidate in-situ water sample measurements concurrent with Landsat TM and AVNIR-2 satellite data were obtained in selected locations from February 1999 to March 2011.
format Thesis
author Anwar, Saumi Syahreza
author_facet Anwar, Saumi Syahreza
author_sort Anwar, Saumi Syahreza
title Ocean Colour Remote Sensing Of Case 2 Waters Using An Optimised Neural Network
title_short Ocean Colour Remote Sensing Of Case 2 Waters Using An Optimised Neural Network
title_full Ocean Colour Remote Sensing Of Case 2 Waters Using An Optimised Neural Network
title_fullStr Ocean Colour Remote Sensing Of Case 2 Waters Using An Optimised Neural Network
title_full_unstemmed Ocean Colour Remote Sensing Of Case 2 Waters Using An Optimised Neural Network
title_sort ocean colour remote sensing of case 2 waters using an optimised neural network
publishDate 2016
url http://eprints.usm.my/32007/1/SAUMI_SYAHREZA_24%28NN%29.pdf
http://eprints.usm.my/32007/
_version_ 1643707534595325952